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Abstract— Radar systems have been used extensively over the 
past decade for variety of applications and in a multitude of 
configurations. Radar engineers wishing to improve the resolution of 
resultant imagery cannot evade the underlying principle of inverse 
relationship between a radar signals bandwidth and a minimum 
featured dimension in range co-ordinate. When it is desired not only 
to detect but also to identify the target as belonging to a certain 
category, high resolution of obtained radar images is of much 
importance. 
Conventionally UltraWideBand (UWB) radars were based on 
generation and coherent reception e.g via matched filtering and 
coherent filtering of ultrashort pulses e.g Gaussian pulses. This 
approach provides high resolution if the pulse duration is short 
enough. However it has the advantage of low spectral efficiency and 
ease of signal repeatability which can make these imaging systems 
susceptible to certain types of electronic counter measures (ECM). 
This paper discusses the generation of pseudo noise radar waveform 
using chaos theory but which has a better chance of combating 
electronic counter measures and high spectral efficiency. 
Simulations and discussions on the suitability of the chaotic 
waveforms as radar waveforms are presented. 
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1.0  INTRODUCTION 

 
adar systems have been used extensively over the 
past decade for a variety of applications and in a 

multitude of configurations. Imaging radars are used to 
obtain visual information about the environment of 
interest, often with a goal of discerning particular objects 
concealed in the background. These radars can be geared 
towards certain scenarios such as discovery of buried 
mines and unexplored ordnance or as a surveillance and 
target tracking tool in a reconnaissance operation. In all 
scenarios radar engineers wishing to improve the 
resolution of resultant imagery cannot evade the 
underlying principle of inverse relationship between a 

 
 

radar signals bandwidth and a minimum imaged feature 
dimension in range coordinates. Thus to properly 
distinguish between target components of particular size, 
one needs to select the bandwidth of imaging radar signal 
accommodating range resolution that corresponds to that 
size. If the radar waveform is a rectangular pulse, it is 
known that the resolution  
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The bandwidth of a rectangular pulse is .1
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the range resolution R  is related to the signal 
bandwidth and propagation velocity c by  
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where the c/2 factor converts the two-way travel time to 
range in meters. 
2.0 TYPICAL RADAR WAVEFORMS 

Continuous-Wave (CW) 

A radar system that transmits continuously is termed 
continuous-wave (CW) radar. The unmodulated, single 
frequency waveform has been used for Doppler radars for 
a long time due to its capability of testing target motion 
relative to the radar. The receiver of CW radar mixes 
(homodynes) the received signal with a replica of the 
transmitted signal. After low pass filtering, the only 
remaining component is the Doppler shift which can be 
used for velocity measurements. Since B=0 for a CW 
signal, the range resolution according to equation 1.2 is 
infinity. Therefore no target range information is 
available in CW radar, and a combination of pulse and 
CW radar is often used for practical purposes. This is 
termed pulsed-Doppler radar. 
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    Short pulse (impulse) 

The most obvious and straight forward high resolution 
radar waveform is the impulse or short pulse. If the 
pulses are transmitted without a carrier, they are termed 
carrierless impulses or baseband video pulses. In many 
cases it’s advantageous to remove the DC content of the 
pulses by differentiation or high pass filtering. The 
resulting pulses are often called monocycle pulses. A 
popular short duration waveform is the Ricker wavelet 
that can be described mathematically as the negative of a 
second derivative of a Gaussian pulse     
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where a is a constant that determines the time duration 
and amplitude of the wavelet. 
Chirp (Linear FM) 

A common way of increasing the pulse energy while still 
maintaining the high resolution of radar is to apply a 
chirp waveform which is a sine wave with a linearly 
increasing/decreasing frequency. This is the most 
common way of generating radar waveforms.  The 
frequency of a chirp f(t) is given by 
             ,0 tftf                                             (4) 
where 0f  is the start frequency and   is the chirp rate 
[Hz/s].Since the frequency is related to the phase     by  
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and the phase of the chip waveform can be written as 
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Using this quadratic phase function a chirp with length Tc 
can be written as complex exponential    
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0 ttjetp                     0<t<Tc.                       (7) 
The spectrum of the chirp can be derived by rewriting 
p(t)  in equation 1.7  as 
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 Taking the real part of equation (1.8), the transmitted 
chirp pulse can be expressed as 
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Figure 1 illustrates the time frequency behavior of a chirp 
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                                            Fig.1 

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

Frequency units

M
ag

ni
tu

de

 
                                   Fig.2 
As is the case with the discrete Fourier 
transform, the N/2 samples contain the positive 
frequency components and the negative frequency 
components appear in the second half of the 
array as indicated in Fig.2. 
 
 
 

 
          



 

 

3.0 CHAOS THEORY 

 Dynamical systems 

 
Fig.3 

Mathematically, a dynamical system is a description of 
possible evolutions over time of points in some space 
called state space of the system. In applied mathematics 
the points in state space are often identified with pairs of 
positions and velocities and some physical configuration. 
If time t is measured continuously over some interval of 
real numbers, the possible evolution of a system will 
often be determined by a differential equation with t as an 
independent variable. Figure 3 shows the interplay 
between a differential equation and the physical system 
.Specialists may find themselves focusing on this diagram 
at particular points. For example a theoretical physicist 
might focus across the top, a pure mathematician across 
the bottom and applied mathematician or scientists across 
the vertical direction [6] 
Chaos system 
Chaos is the word used to describe deterministic behavior 
for which even if the initial conditions were known to an 
arbitrary degree of precision, the long term behavior 
cannot be accurately predicted. This is certainly the case 
with many natural systems for which we cannot know the 
initial conditions to an arbitrary degree of precision. A 
classic example, first considered by E.N Lorenz is the 
weather [Lorenz 1963]. Edward Lorenz, pioneer in using 
computers accidentally found in 1960, that in certain 
kinds of non-linear equations, the result displayed 
sensitive dependence on initial conditions. This is a 
distinguishing feature of chaos systems. At the end of the 
nineteenth century Henry Poincarẻ was aware of the fact 
that orbits of three bodies moving under a central force 
due to gravity are quite complicated and change 
drastically with a change in initial conditions. He tried to 
find a theorem to explain more generally the phenomenon 
and to establish a theory related to the chaotic paths in a 
system of differential equations. He showed that three 
dimensional paths in a system of non linear differential 
equations can be chaotic. Lorenz developed mathematical 
models which could predict the behavior of weather. 
However these equations have now been found to predict 
the behavior of many natural phenomenon. 
NON LINEAR DYNAMICS 

Any nonlinear system which can be expressed by a set of 
mathematical equations includes two types of variables-
dynamic and static. Dynamic variables are the quantities 
which changes with time whereas the static variables 
often referred to as the control parameters, remain 
constant until changed by an outside force[7]. When 
studying the non linear system, the control parameters are 
often changed so as to learn how the behavior of the 
system changes in response. The act of changing a 
control parameter to change the system behavior is 
known as perturbation. 
State space or phase space is the space of the dynamic 
variables and might in some cases include their 
derivatives. A point in the state space represents a state of 
the system at a given time. As the system evolves with 
time, the state of the system moves from point to point in 
the state space thus defining a trajectory. A trajectory 
therefore displays the history of the states of the system. 
Chaos is an aperiodic long term behavior in a 
deterministic system that exhibits sensitive dependence on 
initial conditions. The three components of the definition 
are classified as follows: 

1. Aperiodic long term behavior means that the 
system trajectory in phase space does not settle 
down to any fixed points (steady state), periodic 
orbits, or quasi-periodic solutions as time tends 
to infinity. This part of the definition 
differentiates aperiodicity of for example, a 
periodically oscillating system that has been 
momentarily perturbed. 

2. “Deterministic” systems can have no stochastic 
systems (meaning probabilistic) parameters. It is 
a common misconception that chaotic systems 
are noisy systems driven by random processes. 
The irregular behavior of chaotic systems arises 
from intrinsic non-linearity rather than noise. 

3. “Sensitive dependence on initial conditions” 
requires that trajectories originating from nearly 
identical conditions will diverge exponentially 
quickly.[2] 

The mathematical model developed, now called, the 
Lorenz system has been used as a paradigm for chaotic 
systems satisfy the above definition. The Lorenz system 
consists of just three coupled first-order differential 
equations. 
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(9) 
Lorenz chose parameter values α=10, b=8/3 and 
r=28.With these choice for the parameters, Lorenz system 
is chaotic exhibiting the traits described in the definition 
given for chaos[8].For parameter values for which the 
Lorenz system demonstrates chaotic dynamics, all 
solutions, regardless of their initial conditions, converge 
to a set called the strange attractor. The strange attractor 
can be observed in state space (also called phase 
space),where each state variable is assigned a respective 
axis in the x-y-z plane space. Figure 2 illustrates a 
solution to the Lorenz system tracing out the strange 
attractor in state space. Since the Lorenz system satisfies 
the uniqueness theorem [4], no points of intersection 
appears on the strange attractor.Nontheless all solutions 
eventually converge to the butterfly shaped attractor. 
Specifically the attractor is composed of two wings, and 
each wing of the attractor encircles one of the two 
nontrivial fixed points. The shape 
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Figure 4: Lorenz strange attractor 
of the strange  attractor varies for varying parameter 
values. A time series of x, y and z is shown in Figure 
2.The initial conditions can be chosen arbitrarily. From 
direct observation of the time series, it is reasonable to 
say  that  the y and z variables are periodic. 
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Figure 3: Time series of x, y and z 

Chaotic systems exhibit sensitivity to initial conditions. 
For chaotic systems, two solutions with nearby initial 
conditions exponentially diverge. To demonstrate that the 
Lorenz system has this sensitivity, the x state variable 
from two distinct solutions with nearby initial conditions 
are shown in   Figure 3.As can be seen from this figure, 
the two signals begin nearby and rapidly diverge from 
each other. Although only x (t) is shown the same 
behavior can be observed from both y (t) and z(t). 
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Figure 5:   Time series plot for x with a    variation 

in initial conditions 

 
NON LINEAR DYNAMICS 
This section focuses on numerically and analytically 
exploring the Lorenz parameters to determine how 
various radar waveform metrics vary as the parameters 
are varied 
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Fig. 6 
The FFT of the chirp pulse is shown in Figure 6.As in the 
case with the discrete Fourier Transform, the first N 
samples contain the positive frequency components and 
the negative frequency components appear in the second 
half of the array. The setting of the bandwidth of the 
system can be analytically discussed by considering the 
time scaling of the Lorenz equations 
Time-Scaling the Lorenz Equations   
Define the variable  tx



  as shown in equation2.0 

where x, y and z denote the state variable of the Lorenz 
system: 



 

 

 
 




















)(
)(

tz
ty
tx

tx                                                             

(14) 

Next, the   
   
       
      
























tbztytx
tztxtytrx

txty
xf



             

 
 
Therefore, the Lorenz system can be written as shown in 
equation 2.2. 
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Let  

tx denote the solution to equation 2.3.Also let 

x
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 t  denote the solution to equation 2.3 where a is a 

constant greater than zero. 
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If both s If both systems have identical initial conditions 
then ,then  
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In other words scaling the Lorenz equations by a has 

the effect of time scaling   tx


 by a. Scaling  

tx  

by a in time also scales the bandwidth of x(t) by a. 
 
CONCLUSION 
Observation of the waveforms in Fig.3 shows its 
pseudorandom nature of the chaotic waveforms which 
means it cannot be susceptible to any form of 
electronic countermeasure. Compared to the more 
commonly used radar waveform, it can be seen from 
Fig.2 and Fig.5. that by variation of the Lorenz 
parameters, appropriate signal spectrum can be 
obtained. 
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