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Optimizer
K. Wojdan, K. Swirski, M. Warchol, J. Milewski, and A. Miller

Abstract—An improved version of the immune inspired optimizer
SILO is presented in this paper. The new model identification method
allows for utilization of model gains constraints. Moreover the
operation of a new Transition State algorithm is analyzed based on a
real-life example. The improved version of SILO was implemented
in a real power boiler. Results from a real combustion process
optimization are presented in this paper.
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I. INTRODUCTION

THE optimization of power boilers is an important topic
in research and in the implementation projects in the

power industry. The combustion process in a power boiler is
a complex process, with a large number of control variables,
disturbances and outputs. This is a dynamic non-linear process
characterized by long response time caused by process inertia
and transport delay. It is hard to control such a process
using only standard SISO (Single Input Single Output) control
algorithms. In this article we present an improved version
of the immune inspired optimizer SILO. The task of SILO
is to perform an on-line optimization of the current process
operating point. The optimizer is implemented above the base
control layer in a layered control structure (refer fig. 1). The
SILO system calculates setpoints or setpoints corrections for
controllers that operate in the base control layer. Control
systems of power units in power plants are based on PI
(Proportional-Integral) controllers. These controllers control
sub-processes (e.g.: oxygen level in exhaust gases or windbox
to furnace differential pressure in case of a power unit control
system) that have an influence on a main optimized MIMO
(Multi Input Multi Output) process (e.g. combustion process
in case of a power unit control system).

The SILO system optimizes a process steady state. The
output decision vector md is updated every optimization cycle
period Topt. This time period is not shorter than time needed to
reach a new process steady state after a control vector change.
Changes to the md vector (setpoints for base controllers)
are limited due to the stable and safe operation of the base
control system. In the case of detecting a significant process
operating point transition (e.g.: essential modification of an
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Fig. 1. SILO system in a layered control structure. Description: y - main
process outputs vector, d - main process disturbances vector, md - decision
vector (setpoints for low level controllers), mt - traced setpoints for low level
controllers, mc - vector of measured sub-process outputs (inputs to the main
optimized process), mf - control variables availability vector, mp - operator
setpoints vector.

industrial plant load), the SILO system activates a transition
state mechanism. In such a case SILO tries to move the
decision vector md to the neighborhood of an optimal solution
related to the new process operating point. This md vector
transition is safe to the plant and fast in comparison with
standard, steady state optimization.

In each optimization cycle the SILO system calculates the
decision vector increment ∆md based on:

• measured output vector y,
• measured disturbances vector d that have an impact on

the optimized process outputs,
• information about availability of control loops and de-

vices (mf vector) that can be influenced by SILO.

The optimizer calculates an output vector increment ∆md and
adds this increment to the vector mt that represents traced
decision variables (traced setpoints for low level controllers).
The calculated sum of ∆md and mt is saved in the output md

vector. Utilization of the mt vector is caused by application
of rate and range constraints for setpoints in the base control
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layer. If the k-th low-level control loop is excluded from
SILO supervisory (mf

k = 0) then SILO passes the mt
k value

directly to the md
k output element. Thus inactive outputs trace

operator settings. It allows bumbles switching between SILO
and process operator.

TABLE I
ANALOGY BETWEEN IMMUNE SYSTEM AND SILO.

Immune System SILO

Pathogen Measured and non-measured disturbances
B cell A data unit that represents a static process

response for a control change in a particular
process operating point

Antibody:
antigen binding
side

Current process operating point

Antibody: effec-
tor part

Optimal control vector change ∆md

Th cell Algorithm which is responsible for selection
of proper group of B cells during model
creation process

Primary immune
response

Mixed Model Optimization algorithm

Secondary
immune response

Quasi-Random Extremum Control layer of
the optimization algorithm

The SILO operation and optimizer structure are inspired by
immune system – biological structures and processes within
an organism [4]. To stay in compliance with previous papers
the immune analogy is provided by table I in order to provide
information concerning biological inspiration of our system.

II. GATHERING KNOWLEDGE ABOUT A PLANT

The goals of the SILO Knowledge Gathering module are
listed below:

• Identification of the static relations between optimized
process inputs mc (measured input to a main, optimized
process) and outputs y at different process operating
points;

• Saving and updating of long term averages of the control
vector mc at different process operating points (e.g.
different power unit loads and coal mill configurations
in the case of a power boiler optimization). This infor-
mation will be used to handle a significant process point
transition in a safe and effective way.

Identification of the static relations between process inputs
and outputs is based on an on-line analysis of a time window.
This time window consists of the current and historical values
of the y, d and mc vectors. The Knowledge Gathering module
only analyzes time windows that include an essential change
of at least one element of the vector mc and in which the
process disturbances d are constant. Static process reaction
for a control change is automatically identified. The computed
increment ∆y, ∆mc and information about the current process
operating point are saved in memory in the form of a B cell
(refer fig. 2). Each B cell has a timestamp. Immune mem-
ory in a real SILO implementation for combustion process
optimization in a power plant consists of tens of thousands
of B cells. The information stored in B cells is utilized in

Fig. 2. Optimization and Knowledge Gathering module.

the model creation process that is automatically performed in
each optimization cycle. More information about SILO’s B
cell structure can be found in [1].

The second goal of the Knowledge Gathering module is the
saving and updating of long term averages of the mc, d and y
vectors at different process operating points. These long term
averages are transformed into AIT (Automatically Identified
Targets) objects that are used in the Transition State layer
(a sub-algorithm of the Optimization module). Each AIT has
a timestamp. When a process transition state is detected the
system searches for the most recent AIT that fits the current or
estimated process operating point. The AIT creation process
is described in [3]

III. QUASI RANDOM EXTREMUM CONTROL

In the initial phase of SILO operation the size of the immune
memory is relatively small. In analogy to the immune system
one can say that the body is often attacked by new, unknown
pathogens. Early on, SILO does not have sufficient knowledge
to create a mathematical model of the process and solve the
optimization task based on this model. A special heuristic that
is applied in the Quasi Random Extremum Control layer covers
the following goals:

• Gathering knowledge about the process. This is done
by modifying the md vector in such way that each
modification can be treated as a standard identification
experiment. New B cells are created based on these
identification experiments;

• Decreasing the value of an optimized quality indicator
at a long time horizon with the assumption that process
disturbances are constant at a long time horizon. In
analogy to the immune system one can say that a goal
of the Quasi Random Extremum Control layer is the
elimination of the pathogen at the long time horizon with
the assumption that the body is attacked by one sort of
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pathogen at the long time horizon (a primary immune
response);

• maintaining the good conditioning of the model identifi-
cation task [2].

A special heuristic applied in the Quasi Random Extremum
Control layer changes only one element of md vector in each
optimization cycle. In reaction to this change the process
outputs y reach a new steady state. The Knowledge Gathering
module automatically identifies such a static process reaction
and creates B a cell. In a new optimization cycle a different
element of md is modified and a new B cell is created. After a
defined number of cycles the best md vector value is restored
and applied. This value of the md vector is related to the
lowest registered value of an optimized quality indicator.

The Quasi Random Extremum Control layer is executed if:
• There are not enough B cells in the immune memory to

create a mathematical model of the process;
• The knowledge stored in the immune memory is not

sufficient to improve the value of the quality indicator.
The model is not accurate enough. The applied increment
of the md vector calculated in the Mixed Model Optimiza-
tion or the Global Model Optimization layer (refer fig. 2)
is not able to decrease the value of the quality indicator.

IV. STEADY STATE OPTIMIZATION

The SILO system performs an on-line, model based, steady
state process optimization during most of its operation time.
The optimized quality indicator is the sum of penalties related
to the process outputs and selected elements of the mc vector.
The SILO system penalizes a difference between a demand
value of a process output y̌k (optionally for a selected element
of the m̌c vector) and the measured or estimated value for
output ỹk (optionally a selected element of the m̃c vector).
Each single penalty is the sum of a linear and square term, and
each term takes insensitivity zones into account. No penalty
is applied when an analyzed signal is within an insensitivity
zone.

J =

nm∑
k=1

[
αk

(
|m̌c

k − m̃c
k| − τ lmk

)
+

+

+βk
(
(|m̌c

k − m̃c
k| − τsmk )+

)2]
+

+

ny∑
k=1

[
γk

(
|y̌k − m̃k| − τ lyk

)
+

+δk

(
(|y̌k − ỹk| − τsyk )

+

)2
]

(1)

where:
αk – linear penalty coefficient for k-th control variable,
βk – square penalty coefficient for k-th control variable,
γk – linear penalty coefficient for k-th optimized output,
δk – square penalty coefficient for k-th optimized output,
τ lmk – width of insensitivity zone for linear part of penalty
for k-th control variable,
τsmk – width of insensitivity zone for square part of
penalty for k-th control variable,

τ lyk – width of insensitivity zone for linear part of penalty
for k-th output,
τsyk – width of insensitivity zone for square part of penalty
for k-th output,
(·)+ – “positive part” operator (x)+ = 1

2 (x+ |x|),
m̃c

k – current process value for k-th control variable,
ỹk – current process value for k-th optimized output,
m̌c

k – demand value for k-th control variable,
y̌k – demand value for k-th optimized output.

Steady state, model based optimization is performed in the
Mixed Model Optimization or the Global Model Optimization
layer (refer fig. 2). In both layers a model is formulated in the
following way

∆y = ∆mdK (2)

In case of mixed model based optimization, elements of the
matrix K are estimated based on information stored in the
local observation matrices ∆ML and ∆YL as well as the
global observation matrices ∆MG and ∆YG, where

∆ML =


∆mc

1,1 ∆mc
1,2 . . . ∆mc

1,nm

∆mc
2,1 ∆mc

2,2 . . . ∆mc
2,nm

...
...

. . .
...

∆mc
l,1 ∆mc

l,2 . . . ∆mc
l,nm

 ,

∆YL =


∆y1,1 ∆y1,2 . . . ∆y1,ny

∆y2,1 ∆y2,2 . . . ∆y2,ny

...
...

. . .
...

∆yl,1 ∆yl,2 . . . ∆yl,ny

 .
Each of the l rows of the ∆ML matrix consists of incre-

ments ∆mc
i of elements of the mc vector. These increments

are stored in a local B cell. This local B cell belongs to
the set of l youngest local B cells. The local B cell is a
selected B cell that is related to the current process operating
point. Such B cell was created when a historical process
operating point (e.g. unit load in case of a combustion process
optimization in a power boiler) was similar to the current
process operating point. By analogy matrix ∆MG consists of
mc vector increments that are stored in the set of g youngest
global B cells. Global B cell selection is based only on a time
criterion. Each of the l rows of the ∆YL matrix consist of y
vector elements increments ∆yi that are stored in a local B
cell. By analogy matrix ∆YG consists of y vector increments
that are stored in the set of g youngest global B cells.

In the case of a MISO (Multi Input Single Output) model,
a weighed sum of squared residuals can be used to estimate
a vector k value that is related to a selected column of the
matrix K. This sum is expressed in the following way

S (k) = ηeTLeL + ϑeTGeG =

= η (∆yL −∆MLk)
T

(∆yL −∆MLk) + ϑ

(∆yG −∆MGk)
T

(∆yG −∆MGk) =

= η
(
∆yTL∆yL − 2kT ∆MT

L ∆yL + kT ∆MT
L ∆MLk

)
+

+ϑ
(
∆yTG∆yG − 2kT ∆MT

G∆yG + kT ∆MT
G∆MGk

)
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The relation between an influence of knowledge from the local
and global B cells on the elements of the final gain matrix
can be expressed by a relation between values of the η and ϑ
weights.

In the new version of SILO an additional optimization task
is solved to estimate elements of the gain matrix

min
k
{kT

(
η∆MT

L ∆ML + ϑ∆MT
G∆MG

)
k

−2kT
(
η∆MT

L ∆yL + ϑ∆MT
G∆yG

)
}

with constraints
kl ≤ k ≤ ku

The additional optimization task allows for the utilization of
constraints related with automatically identified model gains.
In most SILO implementations these gains are unbounded. In
such case a Least Square Method can be used to estimate
elements of the matrix K. Thanks to the additional optimiza-
tion task the system can use some expert knowledge about
the range of gain values for selected dependences between
process inputs and outputs. One of the advantages of the
new identification method is that the SILO system still has
information about the matrix W

W = η∆MT
L ∆ML + ϑ∆MT

G∆MG

This information can be used to compute a conditioning level
of the model identification task based on a spectral norm

c =
∥∥W−1

∥∥
2
‖W‖2 =

σmax

σmin

If the conditioning of the model identification task is bad, the
system executes actions that can improve the situation. These
actions were presented in [3].

An optimal increment ∆md of the md vector is computed
based on the identified model. This increment minimizes
the value of a quality indicator. It also fulfills constraints
for a maximal absolute increment of the md vector in one
optimization cycle. The following optimization task is solved
in each optimization cycle

min
∆md,mdlp,mdln,mds,ydlp,ydln,yds

{
nm∑
k=1

[
αk

(
mdlp

k +mdln
k

)
+

+βk
(
mt

k + ∆md
k − m̌c

k −mds
k

)2]
+

ny∑
k=1

[
γk

(
ydlpk + ydlnk

)
+

+δk
(
ỹk + ∆mdKk − y̌k − ydsk

)2]}
with constraints

mdlp
k ≥ mt

k + ∆md
k − m̌c

k − τ lxk ,m
dlp
k ≥ 0,

mdln
k ≥ m̌c

k − xtk + ∆md
k − τ lxk ,mdln

k ≥ 0,

−τsxk ≤ mds
k ≤ τsxk ,−τsyk ≤ y

ds
k ≤ τ

sy
k ,

ydlpk ≥ ỹk + ∆mdKk − y̌k − τ lyk , y
dlp
k ≥ 0,

ydlnk ≥ y̌k − ỹk −∆mdKk − τ lyk , y
dln
k ≥ 0,

zlow ≤ ∆md ≤ zhi, ulow ≤ mt + ∆md ≤ uhi

where:
m̌c

k – demand value for k-th control variable,
y̌k – demand value for k-th optimized output,
ỹk – current process value of k-th optimized output,
mdlp

k , mdln
k – additional variables representing the dis-

tance from mt
k + ∆md

k to the neighborhood of m̌c
k with

radius τ lxk ,
ydlpk , ydlnk – additional variables representing the distance
from ỹk+∆mdKk to the neighborhood of y̌k with radius
τ lyk ,
mds

k – additional variable representing the current part the
of insensitivity zone around xtk used in the square part of
performance index,
ydsk – additional variable representing the current part of
the insensitivity zone around y̌k used in the square part
of performance index.

The computed increment ∆md is added to the current value
of the mt vector. This sum is saved as the optimizer output
md

md = mt + ∆md

The increment of inactive elements of the md vector (defined
by the mf vector – refer fig. 1) is set to zero.

The Mixed Model Optimization layer is activated when
SILO has sufficient knowledge about static process dependen-
cies in the close neighborhood of the current process operating
point. If there are not enough local B cells in memory, then
only global B cells will be used to create a global model.
However if there are not enough global B cells in memory
(initial phase of SILO operation) or further improvement of
a quality indicator value is not possible based on the model,
then SILO switches to the Quasi Random Extremum Control
layer.

By analogy to the immune system the operation of the
Mixed Model Optimization layer can be compared to a sec-
ondary immune response. The SILO system uses the knowl-
edge stored in the B cells to provide for the fast and effective
elimination of pathogens (process disturbances compensation).

V. TRANSITION OF PROCESS OPERATING POINT

The newest version of SILO has a new algorithm that is able
to handle a significant process transition in an effective way.
This algorithm is implemented in the Transition State layer in
the Optimization module of SILO (refer fig. 2). In the case of
a combustion process optimization this new mechanism allows
for optimization of relatively small power units characterized
by frequent transitions of unit load.

When an essential disturbance change is detected the op-
eration of the Quasi Random Extremum Control layer or
one of two model based layers are suspended. At the same
time the Transition State layer is activated (refer fig. 2). The
memory is searched for AIT (Automatically Identified Targets)
and for UDT (User Defined Targets). AIT and UDT objects
store information about a process operating point pattern and
a related target value of the md vector. In each execution
cycle of the Transition State layer (e.g. every 30 seconds
in the case of a combustion process optimization) a special
algorithm searches for AIT and UDT characterized by patterns
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Fig. 3. Operation of the Transition State layer.

that fit the current process operating point (e.g. similar unit
load and configuration of active pulverizers in the case of a
combustion process optimization). In the case that there are
AIT and UDT that meet the pattern requirements the system
skips a set of UDT objects and selects an AIT object with
the youngest timestamp. If there are no AIT objects and only
UDT objects fit the current process operating point then the
system selects a UDT object with the highest priority. Thanks
to different priority levels an expert can define more general
and more specific UDT objects depending on their knowledge.
The algorithm was described in [3].

Real time plots of disturbances (d vector) and control signals
(mc vector) are presented in figure 3. These trends were
recorded on a real 220 MW power unit. The middle section
of the plot presents a significant process operating point
transition. Unit load increases from the minimal acceptable
level of 120 MW to the maximal acceptable level of 220 MW.
This transition is done with the highest possible unit load
rate. In fig. 3 only two out of seven total elements of the
vector mc are presented – positions of the left and right OFA
(Over Fire Air) damper in the second section of OFA dampers.
One should note that SILO also modified elements of the mc

vector other than those presented. Disturbances are represented
by three signals: demand megawatt production (MEGAWATT
DMD in fig. 3), current megawatt production (MEGAWATT
PROCESS in fig. 3) and the speed of the coal feeder related
with pulverizer number 4. This pulverizer was activated during
the presented unit load transition.

The first time period presented in fig. 3 is related with a
steady state optimization. SILO updates the value of the md

vector every 8 to 15 minutes (please refer to the left OFA II
position trend). Based on a mathematical model of the process
the optimizer tries to maintain process outputs at desired
levels. Load transition process starts at 8:45. Modification of
the demand megawatt production is automatically identified
(based on comparison with current megawatt production). The
Transition State layer algorithm finds and applies a UDT
object related with a new demand megawatt level and current
active pulverizers configuration. SILO moves values of the
md vector elements to the target values stored in the UDT.
The speed of the md vector transition is limited by the rate
limits. One can see that the left OFA II damper was not able

to reach the demand target value due to a rate constraint.
After the next demand megawatt level change a new UDT
vector is applied. When the speed of coal feeder number 4
was essentially increased, a third UDT was applied. Further
modifications of the demand megawatt level and coal feeder
speed caused application of AIT objects from the optimizer
memory (refer fig. 3). The presented power unit often operates
in the 190-220 MW load range. The Knowledge Gathering
module had enough time to create and save AIT objects related
to this load range. One should notice that SILO applies the
youngest AIT. Thanks to these feature the system is able to
adapt to variable process characteristics (e.g. changes related
with seasonality or devices wear).

After a unit load transition is over, the regular steady state
optimization is activated. One can see that the solution is
only slightly modified. There is no need for an essential and
slow (due to rate constrains) md vector modification. Thus
the Transition State layer was able to move the control vector
value to a point that lies in a close neighborhood of an optimal
solution related with the new process operating point.

VI. REAL COMBUSTION PROCESS OPTIMIZATION

Combustion process optimization is a task of all SILO real
life applications. So far SILO has been implemented in 10
power units in the USA, 7 power units in Europe and 5 power
units in Asia. The smallest unit is 135 MW and the largest is
890 MW. The newest implementation of the improved version
of SILO in 220 MW power unit in Poland is presented in this
chapter.

SILO goals are as follow:

• exhaust gases temperature has to be lower than 140 C de-
grees,

• CO emission has to be lower than 250 mg/Nm3,
• NOx emission has to be lower than 300 mg/Nm3,
• superheat and reheat steam temperature should be main-

tained at the 535 C degree level,
• LOI (Loss Of Ignition) indicator should be less than 5 %.

The output decision vector md consists of seven elements:
demand oxygen level in exhausted gases and six OFA (Over
Fire Air) dampers. The disturbance vector d consists of six
elements: current unit load, demand unit load, and the current
speed of each coal feeder related with one of four pulverizes.

TABLE II
EXHAUST GASES TEMPERATURE [DEGREES C].

Load range SILO OFF SILO ON

Average exhaust gases temperature [degrees C]
low load 120-125 MW 120.64 113.32
load transition range 125-215 MW 132.11 124.68
high load 215-225 MW 137.17 132.55

Relative time of exceeding the 140 C degrees level [%]
low load 120-125 MW 1.25 0.00
load transition range 125-215 MW 29.87 0.00
high load 215-225 MW 42.49 2.36
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TABLE III
CO EMISSION [MG/NM3].

Load range SILO OFF SILO ON

Average CO emission [mg/Nm3]
low load 120-125 MW 53.57 18.40
load transition range 125-215 MW 93.50 34.60
high load 215-225 MW 148.29 55.90

Relative time of exceeding the 250 mg/Nm3 level [%]
low load 120-125 MW 3.60 0.12
load transition range 125-215 MW 8.62 2.22
high load 215-225 MW 17.63 2.36

TABLE IV
NOx EMISSION [MG/NM3].

Load range SILO OFF SILO ON

Average NOx emission [mg/Nm3]
low load 120-125 MW 261.27 262.16
load transition range 125-215 MW 321.21 275.23
high load 215-225 MW 363.41 328.50

Relative time of exceeding the 300 mg/Nm3 level [%]
low load 120-125 MW 13.30 11.35
load transition range 125-215 MW 61.45 20.11
high load 215-225 MW 96.50 64.98

Average exhaust gases temperature is essentially lower when
SILO optimization is enabled (refer table II). Relative time of
exceeding the 140 degrees C level is essentially reduced. It
results in a higher boiler efficiency. Average CO emission is
essentially reduced when SILO optimization is enabled (refer
table III). Relative time of exceeding the 250 mg/Nm3 level
is essentially reduced. It results in a higher boiler efficiency
and significantly lower air pollution. SILO reduces the NOx

emission (refer table IV). Relative time of exceeding the
300 mg/Nm3 level is reduced, especially when the unit load
is high and when there is a unit load transition (positive effect
of the new Transition State layer). It results in lower air
pollution. Average LOI (Loss Of Ignition) is reduced when
SILO optimization is enabled (refer table V). Relative time of
exceeding the 250 mg/Nm3 level is reduced by 7 % in case of
low unit load and by 26.5 % in case of high unit load. It results
in a higher boiler efficiency. Moreover a power plant can sell a
bottom ash from the boiler only if the LOI is lower than 5 %.
Superheat and reheat stem temperatures are maintained on a
similar level when SILO is enabled and when optimization is
disabled. SILO slightly improves superheat and reheat stem
temperature when the unit operates with low load. In such
case it is hard to maintain a stem temperature at the desired
535 degrees C level. SILO increases these temperatures by
1.5 degrees C.

VII. SUMMARY

Observations and results from a real life SILO imple-
mentation for combustion process optimization show that the
optimizer is able to perform an effective steady state optimiza-
tion. Values of all optimized process outputs were improved
when power unit was operating with the low and high load.
Significant improvement can also be observed during a unit
load transition. This is a result of the new Transition State
layer application.

TABLE V
LOI – LOSS OF IGNITION [%].

Load range SILO OFF SILO ON

Average LOI [%]
low load 120-125 MW 4.5318 4.1760
load transition range 125-215 MW 4.3231 3.9833
high load 215-225 MW 5.7711 5.3074

Relative time of exceeding the 5 % level [%]
low load 120-125 MW 30.93 23.78
load transition range 125-215 MW 21.77 16.98
high load 215-225 MW 82.04 55.51
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