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Abstract—In traditional dynamic modeling of multi-body mechan-
ical systems, the kinematic joints are assumed to be ideal or perfect,
i.e., the clearance, friction, wear, and lubrication effects at the joints
are neglected in order to simplify the dynamic model. However, in
a real mechanical joint, a gap is always present to allow for the
relative motion between the connected links as well as to permit
the assembly of components. Studies have shown that the clearances
and the tribological effects at the joint seriously affect the dynamic
response of mechanical systems, and therefore, proper modeling of
the imperfect joints in multi-body mechanical systems is required
to achieve better understanding of the dynamic performance of the
multi-body systems, especially at this era of the increasing demand
for high-speed and precise mechanisms and machines.

In this paper a state of the art on dynamic modeling of multi-
body mechanical systems with imperfect kinematic joints is critically
reviewed. The goal is to review past and recent developments
and approaches used in the computer-aided kinematic and dynamic
analysis of mechanical systems with real joints. Suitability of various
strategies employed in computational dynamics, and also the insuf-
ficiently addressed areas which require further attention in this field
of study are presented.

Keywords—Cartesian coordinates, Imperfect kinematic joints,
Multi-body system

I. INTRODUCTION

MULTI-BODY mechanical system can be defined as an

assembly of two or more bodies that are imperfectly
connected to each other by use of different types of joints so
that the bodies are constrained to move relative to each other.
Mechanical systems may range from comparatively simple
systems such as slider-crank mechanisms or four-bar linkages
to much more complex systems such as those applied in
automotive, railway, aerospace, robotics and earth machinery
industries, among others.

The bodies which make up a mechanical system can ei-
ther be rigid or flexible. A rigid body is one which can
translate and/or rotate, but can not deform on application
of forces. Although a truly rigid body does not exist, many
engineering components are assumed to be rigid because their
deformations and distortions are negligible in comparison
with their relative movements. Hence traditional analysis of
multi-body mechanical systems assumes all the links to be
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rigid. However, many multi-body mechanical systems such
as automotive mechanisms, robots, aircraft mechanisms and
earth moving machineries which undergo large translation and
rotation displacements are either made massive in order to
increase rigidity, or are driven slowly so that the dynamic
flexibility effects are not significant. As a result, more power is
needed to drive them and subsequently, lower work efficiency
is achieved. In search for higher efficiency, low cost and
greater productivity in machines and mechanisms, links of
lighter weights are currently being designed to carry larger
loads, and to operate at higher speeds. The use of light weight
materials to produce the links of a multi-body system can
reduce the driving power and increase the response speed.
However, light members are more flexible and hence the
standard rigid body mechanism models can no longer be used
to accurately predict the behavior of these systems.

The imperfect joining of two bodies that make up a multi-
body system is called a kinematic pair or kinematic joint or
simply a joint. These joints which include revolute, prismatic,
spherical and cylindrical, among others, introduce kinematic
constraints to the system by removing some degrees of
freedom. In Figure 1, some of the most common types of
mechanical joints are shown.

body j
body j

(a) Prismatic (b) Revolute (c) Cylindrical

(d) Spherical

Fig. 1. Types of joints [1]

A prismatic joint allows only relative translation between
body i and body j, while a revolute joint allows only relative
rotation between body i and body j. The cylindrical joint
allows body i to translate and rotate with respect to body j
along and about the joint axis, while a spherical joint allows
body i to rotate with respect to body j about all three axes. In
planar multi-body systems, revolute and prismatic joints are
the ones commonly used to connect the bodies.

Traditionally, the kinematic joints are assumed to be ideal
or perfect, i.e., the clearance, friction, wear, and lubrica-



tion effects at the joints are neglected in order to simplify
the dynamic model. However, in a real mechanical joint, a
gap is always present to allow the relative motion between
the connected links as well as to permit the components’
assemblage. These clearances seriously affect the dynamic
response of mechanical systems. For instance, impact forces
due to clearance induce increased vibration and noise, reduce
component life and result in a loss of precision. Therefore,
proper modeling of clearance joints in multi-body mechanical
systems is required to achieve better understanding of the
dynamic performance of the machines and mechanisms.

When studying the multi-body system motion, two different
types of analysis are performed, namely, kinematic analysis
and dynamic analysis. Kinematic analysis involves the study
of the system’s motion without considering the forces which
produce the motion, i.e., only the position, velocity, accelera-
tion and jerk of system components are determined. Kinematic
problems are purely geometrical in nature and can be solved
irrespective of the forces and the inertia characteristics such
as mass, moment of inertia and the position of the center
of gravity of the links. On the other hand, dynamic analysis
involves the study of the system motion in relation to the
causes which produce the motion, including externally applied
forces and moments.

Traditionally, the kinematic solutions are obtained graphi-
cally and analytically for simple cases. The forces and mo-
ments on the bodies are then obtained based on the kinematic
data. These traditional methods are only available for simple
cases. However, on advent of high speed digital computers,
numerical solutions for complex multi-body systems have
been developed. The advantage of computational approach in
kinematic and dynamic analysis of a multi-body system is
that it can be employed to a system with very many rigid
bodies, and makes it easy for the inclusion of some practical
features such as friction, beam elasticity, contact compliance
and lubrication.

A. Genesis of Multi-body Dynamics

The genesis of multi-body dynamic has its roots at the origin
of creation. After creation, man had to use the image of God
which he was created with to understand the blank universe
he found, and make inventions which will make his life easier.
The earliest man found that his own powers were inadequate
for the tasks he had to perform on the blank universe to
make the world a better place to live. For instance one of
the currently acknowledged historical evidence pointing to the
ancient technology is the Aztec buildings or the Pharaohs’
Pyramids. The practical use of dynamics as a tool must
have first taken place with the use of rolling logs for the
transportation of heavy stone slabs to the construction sites
and the hoisting of these with pulleys. These early inventions
seen as utilizing dynamic principles, must have occurred along
with the use of wheels, which coupled with a cart, a horse and
a driver, must represent the first multi-body dynamic system
(2]

It took thousands of years for man to find a scientific
explanation for mechanical phenomena, with the first known

attempts on the Fourth century BC. The mechanical devices
(the lever, pulley, etc.) of the time were extremely simple and
were mainly studied from the standpoint of static equilibrium
of forces, and the knowledge of mechanics was limited. Some
of the most important work in the field of static was done
by Archimedes (287-212 BC), who carried a research on the
laws of the lever, center of gravity, among other phenomena.
It was his work on the lever which caused Archimedes to
remark, “Give me a place to stand on, and I will move
the Earth”. Archimedes designed block-and-tackle pulley sys-
tems, allowing sailors to use the principle of leverage to lift
objects that would otherwise have been too heavy to move.
Archimedes is also credited with improving the power and
accuracy of the catapult, and with inventing the odometer
during the First Punic War. The odometer was described as a
cart with a gear mechanism that dropped a ball into a container
after each traveled mile in order to measure distance. All
these discoveries were aimed to the defense of Syracuse, his
motherland, against the Roman siege in the First and Second
Punic Wars.

After Archimedes, there was little advance in mechanics
until the Fifteenth century AC, when it began to develop
intensively with Leonardo de Vinci (1452-1519) an Italian,
making several discoveries in the field of mechanics such as
the moment and the concept of work of a force.

Before publication of Newton’s Principles (1687), dynamics
was an empirical science, that is, it considered description
of observed behavior without an explanation for the causes
that produced motion. Galileo (1564-1642) performed exper-
iments using pendulums and realized that, a pendulum swing
is constant regardless of amplitude (at least to small angle
approximations). In 1592 he took the trouble of dropping
balls from the top of the leaning Tower of Pisa to ascertain
that the rate of fall is constant for all balls of different mass,
thereby discovering the acceleration of free fall. This finding
contradicted the widely held Aristotelian belief that speed of
fall is proportional to weight, and he was dismissed from his
position in the University of Pisa.

The classical mechanics theory as it is known today began
when Newton (1642-1727) introduced the law of gravitation
and explained the concepts of force, momentum, and ac-
celeration [3]. Shortly after Newton’s laws were formulated,
important techniques for their application were developed by
Euler, D’Alembert, Lagrange, Hamilton, Coriolis, Einstein
among others.

Since much of Newton’s work was geometric, Euler (1707-
1783) extended the original ideas of Newton to include rigid
body motions and restated it using calculus. The concept of
dynamic equilibrium was firstly postulated by D’Alembert
(1717- 1783), who introduced the concept of inertia force.
This concept, coupled with the result of Newtons work, yields
an equation stating that the sum of the force on a body in
motion is zero if the inertia force is included. This seem-
ingly simple fact has very important implications in applied
mechanics. The inclusion of calculus in dynamic equilibrium
was systemized by Lagrange (1736-1813), who analytically
derived the generalized equations of motion by using energy
concept. In addition, Lagrange devised a formulation for



dynamics of constrained multi-body systems. This contribution
opened the way for formulation and solution of complex
and practical mechanisms, making Lagrange the father of
multi-body dynamics. The Lagrange formulation method is
so robust and generic that it has not only withstood the test
of time, but also has required no significant modification
or advancement since its inception in 1788 [2]. Additions
to multi-body dynamics theory since then have been in the
development of more efficient numerical solutions of what
has rightly become known as Lagrangian dynamics, or in the
inclusion of some practical features such as friction, beam
elasticity, contact compliance and lubrication. The inclusion
of these additional features has paved the way for the analysis
of complex and practical modern machines and mechanisms.

With the advent of ever increasing computing power, anal-
ysis of practical multi-body dynamic problems has become
possible. Using the principles of Galileo and Lagrange, but
with numerical integration methods for stiff systems, it is
possible to analyze not only mechanisms as simple as the
swinging chandelier, which roused the curiosity of Galileo,
but also complex multi-body systems.

II. MULTI-BODY SYSTEMS WITH IMPERFECT KINEMATIC
JOINTS

A. Prior Research

Over the last three decades, the dynamic modeling of multi-
body systems has been recognized as a key aid in the analysis,
design, optimization, control, and simulation of mechanisms
and manipulators. However, clearance, friction, impact and
other phenomena associated with imperfect joints are routinely
ignored. Therefore, the dynamics of mechanical systems is
often conducted under the assumption that, the joints are ideal
or perfect. The increasing requirement for high-speed and
precise machines, mechanisms and manipulators demands that
the joints be treated in a realistic way, i.e., the joint clearances,
friction and the lubrication effect need to be considered when
determining the dynamic model of the mechanical system.
This is because in a real mechanical joint, a clearance which
allows for the relative motion between the connected bodies
as well as permitting the components assemblage, is always
present. The clearance no matter how small it is, can lead to
vibration and fatigue phenomena, premature failure and lack
of precision or even random overall behavior. If the joint is
not effectively lubricated, the impacts occurring in the system
and the corresponding impulses are transmitted throughout the
mechanical system [4].

There is a significant amount of literature available which
discuses theoretical and experimental analysis of imperfect
kinematic joints in a variety of planar and spatial mechanical
systems with rigid or flexible links. Many of these works focus
on the planar systems in which only one kinematic joint is
modeled as an imperfect joint. Dubowsky et al.(1971) [5], [6]
formulated an impact model by arranging springs and dashpots
as KelvinVoigt model to predict the dynamic response of
an elastic mechanical joint with clearance, which was later
extended in [7] to include flexible mechanisms with clearance
connections.

Earles and Wu (1973) [8] employed a modified Lagrange’s
equation approach in which constraints were incorporated
using Lagrange multipliers in order to predict the behavior
of rigid mechanism with clearance in a journal bearing. The
authors modeled the clearance in the journal bearing as a mass-
less imaginary link whose length was equal to the clearance
size. In their further work (1977) [9], the authors used the
model to predict contact loss between the joint components
for a planar mechanism. The concept of a massless link was
also used by Furuhashi et al. (1978) [10]-[13] to study the
dynamics of a four-bar linkage with clearance at revolute
joints using continuous contact models. Once again, the joint
components were assumed to be in contact at all times.

More complex models have also been developed to study
the effect of clearance on multi-body system dynamics. Con-
sidering the joint to consist of two components, Farahanchi
and Shaw (1994) [14] modeled joint clearance by consider-
ing three configurations of the joint components: Free-flight
motion, when the components are not in contact; the impact
condition, when the components establish contact; and the
sliding condition, when the components are in contact and in
relative motion. The authors used a slider-crank mechanism to
demonstrate their procedure and studied the effect of clearance
size, friction, crank speed and impact parameters. Rhee et
al. (1996) [15] also used the three modes of motion to
model the joint clearance by using an approach similar to
that of Farahanchi [14] to determine the reaction force during
the sliding motion and to study the response of a four-bar
mechanism with clearance in a revolute joint.

Ravn (1998) [16] also implemented the three mode ap-
proach to model the joint clearance. However, in his approach,
the reaction force during the impact and sliding model was
computed using a contact force model. This analysis has
been termed as the continuous method since integration of
the equations of motion is not halted as in the case of the
discontinuous method. A number of recent researchers (2000-
2010) [17]-[31] have since used this technique to model
and study the effect of clearance in the joints of multi-body
systems.

Many papers available have focused on mechanical systems
with rigid links, but this assumption seems to be too restrictive
for many mechanical systems. However, link flexibility effects
have been considered in a few investigations. Dubowsky et
al. (1987) [7] considered the effect of link flexibility for
both planar and spatial mechanical systems but ignored the
effects of friction and lubrication at the joint. Liu er al
(1990) [32] added the lubrication effects through the squeeze
film formula and Reynolds number, but their formulation was
limited to planar problems. Ravn et al. (1999) [33] studied
the effect of joint clearance on system response including the
effect of lubrication and link flexibility. However, their model
was limited to planar problems and they modeled only one
kinematic joint in a system as an imperfect joint. Olivier et
al. (2002) [34] studied the effect of revolute and spherical
joint clearance, lubrication and link flexibility on the overall
dynamic behavior of systems. However, the authors modeled
only one kinematic joint in a system as an imperfect joint.
Dubowsky and Moening (1978) [35] obtained a reduction in



the impact force level by introducing bodies’ flexibility. They
also observed a significant reduction of the acoustical noise
produced by the impact when the system incorporates flexible
bodies. Kakizaki er al. (1993) [36] presented a model for
spatial dynamics of robotic manipulators with flexible links
and joint clearances, where the effect of the joint clearance was
used to control the robotic system. Chunmei et al. (2002) [18]
observed that, the stability of a multi-body system with joint
clearances is far much lower than a system with no clearances.
In addition, the authors found that the consideration of link
flexibility in a multi-body system can reduce the peaks of
impact forces to some degree. Zongyu Chang (2007) [19]
studied the nonlinear dynamic behavior of a four-bar linkage
with an imperfect revolute joint between the coupler and the
follower links. The authors showed that, a clearance in multi-
body system causes periodic and chaotic responses depending
on the coefficient of friction and the clearance size. Jia et
al. (2002) [20] presented both theoretical and experimental
studies about dynamic behavior of a slider-crank mechanism
with clearance at the connecting rod and slider joint. The
authors also investigated the effects of different clearance size
and driving speed on dynamic behavior of the mechanism.
Schwab et al. (2002) [21] investigated the dynamic response
of mechanisms and machines having a revolute joint with
clearance but without friction. Assuming that a mechanism
consists of rigid and elastic links, a comparison between
several continuous contact force models and an impact model
were also presented. In addition, the authors also presented
a procedure to estimate the maximum contact force during
impact. Flores ef al. (2004) [22] presented dynamic analysis
of multi-body systems with revolute joint clearances, including
dry contact and lubricant effects. Flores and Ambrosio (2004)
[23] presented a general methodology for dynamic character-
ization of mechanical systems, in which revolute joints have
clearance. The authors used a slider-crank mechanism with an
imperfect joint to demonstrate the contact detection strategy
and the contact force models they proposed in their procedure.

More recently, Erkaya and Uzmay (2010) [24] investigated
theoretically and experimentally the effects of joint clearances
on vibration and noise characteristics of a slider-crank mecha-
nism with two imperfect revolute joints. The authors modeled
the joints clearance as massless virtual links and assumed a
continuous contact mode between journal and bearing in the
joints connection. They observed that; joint clearance leads to
a degradation in vibration characteristics of the mechanism
relative to that of mechanism without clearance, vibration
characteristics is mainly periodic since continuous contact
between journal and bearing at a joint is normally assumed,
and noise level of the mechanism with clearance is higher
than that of the mechanism without clearance. Although this
research work considered two imperfect revolute joints unlike
many papers in literature, the authors only considered rigid
link dynamics and did not investigate the interaction effects
of these real joints on the overall response of a multi-body
system. Shiau et al. (2008) [25] studied nonlinear dynamic
analysis of a 3-PRS series parallel mechanism considering the
flexibility of links, clearance and friction at the revolute joints.
The authors applied the Newtonian approach to derive the

equations of motion of the 3-PRS mechanism, and combined
the Runge-Kutta method and contact verification criterion to
solve the nonlinear differential equations. The obtained results
showed that the joint clearance significantly affects the mode
shapes by which the rotational motions are dominated. Some
of the natural frequencies decrease as the joint clearance
increases. The dynamic response also becomes larger as the
joint clearances increase, and the contact force increases as
the joint clearance and the friction coefficient increase. The
effects of joint clearances on mechanism path generation and
transmission quality have been investigated by Erkaya and
Uzmay (2009) [26]-[28]. The authors considered four-bar
and slider-crank mechanisms having joints with clearance as
model mechanisms, and proposed an optimization procedure
for decreasing the deviations of path generation and transmis-
sion angle. Khemili and Romdhane (2008) [29] investigated
theoretically and experimentally the dynamic behavior of a
planar slider-crank mechanism with an imperfect revolute
joint between the connecting rod and the slider. By using
a contact model based on the so-called impact-function, the
authors developed a model for the simulation tests under the
software ADAMS, and constructed an experimental rig to
achieve some experimental validations. The authors observed
the occurrence of three types of motion at the clearance, that
is, a free-flight, a continuous contact motion and an impact.
In addition, the authors showed that in case of a flexible
link, the impact forces, the slider acceleration values and the
driving torque at the crank are lower. Hence they concluded
that the flexibility of a link plays a role of suspension for the
multi-body mechanical system. Erkaya and Uzmay (2009) [30]
investigated dynamic response of a four-bar mechanism having
two revolute joints with clearance. The authors proposed a
neural-genetic approach to model several characteristics of
joint clearance and determine the appropriate values of design
variables for reducing the additional vibration effects due
to the clearances. Their results showed that the optimum
adjusting of suitable design variables gives a certain decrease
in shaking forces and their moments on the mechanism frame.
Although this research work considered two imperfect revolute
joints unlike many papers in literature, the authors only
considered rigid link dynamics and did not investigate the
interaction effects of these real joints on the overall response
of a multi-body system. Bing and Ye (2008) [31] presented
dynamic analysis of the reheat-stop-valve mechanism with rev-
olute clearance joint. The authors analyzed the effect of joint
clearance variation induced by the manufacturing tolerance
of components combined with the thermal influence of the
high temperature steam in working condition. Flores (2009)
[37] developed a methodology for studying and quantifying
the wear phenomenon in revolute clearance joints. The author
used a simple model for a revolute joint in the framework of
multi-body systems formulation, and based the contact forces
on a continuous contact force model. Also, friction effects
due to the contact in the joints were represented. Then these
contact-impact forces were used to compute the pressure field
at the contact zone, which ultimately has been employed to
quantify the wear developed and caused by the relative sliding
motion. In addition, the author used simple planar multi-body



mechanical system in form of a four bar linkage with one
imperfect joint to perform numerical simulations. His results
showed that the wear phenomenon is not uniformly distributed
around the joint surface, owing to the fact that the contact
between the joint elements is wider and more frequent in some
specific regions. Dupac and Beale (2010) [38] investigated the
dynamics and stability of a planar slider crank mechanism with
a flexible rod with cracks and a slider clearance. The authors
developed the equations of motion in which the influence of
the cracks size, slider clearance and impact effects were jointly
considered. They observed that the dynamic behavior of the
mechanism is significantly changed by the effects of clearance
combined with the imperfect links, and hence these should
never be ignored when analyzing the dynamic performance
and vibration characteristics of mechanical systems. Flores ef
al. (2009) [4] presented a general methodology for model-
ing lubricated revolute joints in constrained rigid multi-body
systems. The authors obtained the hydrodynamic forces by
integrating the pressure distribution evaluated with the aid of
Reynolds equation, written for the dynamic regime. Numerical
examples were presented in order to demonstrate the use of the
methodologies and procedures described in the work. Mukras
et al. (2010) [39] presented a procedure to analyze planar
multi-body systems experiencing wear at a single revolute
joint. The analysis involved modeling multi-body systems with
revolute joints that consist of clearance and then incorporating
wear into the system dynamic analysis by allowing the size
and shape of the clearance to evolve as dictated by wear. The
authors used an iterative wear prediction procedure based on
Archards wear model to compute the wear as a function of the
evolving dynamics and tribological data. The procedure was
then validated by comparing the wear prediction with wear on
an imperfect joint of an experimental slider-crank mechanism.

B. Impact

Impact is a complex phenomenon that occurs when two or
more bodies collide with each other [40]. This phenomenon
is important in many different areas such as machine design,
robotics, multi-body analysis, just to mention but a few.

Impact, which occurs due to the collision at the joint
(because of the clearance), is the most widely studied effect of
imperfect joints on the dynamic behavior of mechanical multi-
body system. As a result of impact, it has been shown that the
mechanical system state responses change rapidly, and the ve-
locities and accelerations appear to have some discontinuities.
The impact is characterized by large forces that are applied and
removed in a short period of time. The knowledge of the peak
forces generated during the impact process is very important
in the dynamic analysis and hence design of a multi-body
system. Other effects directly related to the impact phenomena
are the vibration and load amplification/propagation to the
system components, fatigue, wear at the contact zone and
energy dissipation. Therefore, the choice of most adequate
and suitable contact-impact force model plays a key role in
the correct design and dynamic analysis of the mechanical
systems with imperfect kinematic joints.

The impact process is considered to occur in two phases;
the compression (or loading) phase and the restitution (or un-

loading) phase. During the compression phase, the two bodies
deform in the direction perpendicular to the surfaces and the
relative velocity of the contacting surfaces in that direction is
gradually reduced to zero. The end of the compression phase
is referred to as the instant of maximum compression. The
restitution phase begins at this instant and ends when the two
bodies separate from each other. The restitution coefficient
reflects the type of collision: For a fully elastic impact, the
restitution coefficient is equal to one, while for a fully plastic
impact, the restitution coefficient is equal to zero [41].

In order to fully model the contact-impact forces resulting
from the collision in multi-body systems with clearance at the
joints, information on the impact velocity, material properties
of the colliding bodies and geometry characteristics of the
contacting surfaces must be included in the model [41]. Three
methods which include stress wave propagation, discontinuous
and continuous (contact mechanics) methods, have been used
to solve the impact problem due to clearance joints in multi-
body mechanical systems [42].

1) Stress Wave Propagation Method: When impact occurs,
a stress wave is set up in the bodies involved in the collision.
In this method, the impact process is studied by analyzing
stress waves created and their interactions with the impacting
bodies. Although this method is accurate, its not widely used
due to its complexity [43].

2) Discontinuous (or Discrete) Formulation Method: Due
to the fact that impacts occur very rapidly, several authors have
ignored the events that occur during the impact process. Only
the states of the system before and after impact are considered
to be of interest when determining the coefficient of restitution
[44]-[46]. In this method, the coefficient of restitutions are
solved by using the linear impulse momentum, the angular
impulse momentum, and the relations between the variable
before and after impact [41], [47]. This method is normally
used when the impact involves very hard and compact bodies.
Discontinuous models usually employed are, Poisson’s model
[48], Newton’s model [48] and Stronge’s model [49], [50].
These three models are equivalent if friction is not considered,
Newton’s model neglects slip direction, but Poisson’s and
Stronge’s models dissipate more energy than the Newton’s
model [51].

Although the discontinuous contact-impact force models are
simple, the assumption that the impact duration is very small
is not true in many cases, and the use of such models tend
to provide poor results when used directly to calculate impact
forces [52]. In addition, these discrete models do not work
well with Coulomb’s empirical laws of friction [53] and are
not straightforward when applied in impacts of flexible bodies
[54]

3) Continuous Formulation Method: The continuous mod-
els are also called compliant contact models and overcome the
problems associated with the discrete models

In continuous methods, its assumed that the impact dura-
tion is much longer than the fundamental frequencies of the
impacting bodies. Hence the forces and deformations arising
from the impact process are considered to vary in a continuous
manner. In this approach, when contact between the bodies
is detected, a normal force perpendicular to the plane of



collision is applied. This force is typically applied as a spring-
damper element which can be linear or non-linear. The spring
represents the elasticity of the contacting bodies while the
damper describes the loss of kinetic energy during the impact.
The spring stiffness in the element can be calculated using
a simple mechanical formula or obtained by means of the
Finite Element Method. Zhu et al. [55] proposed a theoretical
formula for calculating damping in the impact of two bodies in
a multi-body system. When the contact bodies are separating
from each other, the energy loss is included in the contact
model by multiplying the rebound force with a coefficient of
restitution.

Kelvin-Voigt, Maxwell and Standard Linear Solid models
[56] are the three linear spring-damper configurations which
have been used to model the contact-impact forces continu-
ously.

(a) Kelvin-Voigt Model- This is the simplest contact force
relationship and has a two-parameter parallel linear
spring-damper configuration. For this model, the stress-
strain relationship is given as;

de
o= Ele—i—ca €))]

(b) Maxwell Model- This is another two-parameter model,
with the spring and damper in a series configuration. For
this model, the stress-strain relationship is given as;

oy L 0o _ de
Eydt  dt
(c) Standard Linear Solid Model- This is a three-parameter

model which uses two springs and a damper. For this
model, the stress-strain relationship is given as;
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The normal contact force (Fl) in the three linear spring-
damper models is calculated for a given penetration depth ()
as;

2

o+ 3)

Fy = K§
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if vy > 0 (compression phase)

if vy < 0 (restitution phase)

where K is the spring stiffness, J is the relative penetration
depth, c. is the coefficient of restitution and vy is the relative
normal velocity of the colliding bodies. The limitation of
these linear models is the calculation of the spring constant,
which depends on the geometry and the physical properties
of the contacting bodies. In addition, the assumption of a
linear relation between the penetration depth and the contact
forces is a rough estimation. This is because the contact force
depends on the shape, conditions and material properties of
the contacting surfaces, all of which suggest a more complex
and nonlinear relation. Hunt and Crossley [57] showed that
the linear spring-damper models do not represent the physical
nature of energy transferred during the impact process.

The Hertz law of contact is the best known nonlinear contact
force law commonly used for sphere-to-sphere contact. The
Hertzian law is based on the theory of elasticity [58] and is
restricted to frictionless surfaces and perfectly elastic solids.

The Hertz model relates the contact force as a nonlinear
power function of the penetration depth. The force deformation
relationship is given as;

Fy = Ko" 4)

where Fy is the normal contact force, ¢ is the deformation of
the contacting bodies, exponent n = 1.5 for metallic surfaces
and the generalized stiffness K which depends on the material
properties and the shape of the contacting surfaces is given as;

4
K= 3(o1 + 02) [

Ry R }% 5)
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where;

R and Ry are the radii of the spheres (the radius is
negative for concave surfaces and positive for convex
surfaces)

o1 and o9 are the material parameters given by;

1—v2
L fori=1,2
E, or 4 ,

g; —

where F; and v; are the Young’s Modulus and Poisson’s
ratio associated with each sphere.

Unfortunately, the Hertz Law as given in equation 4 does not
account for energy dissipation during the impact process and
hence cannot be used in both phases of contact (compression
and restitution). Although, some studies have been performed
to include the energy dissipation in this contact force law.
Lankarani and Nikravesh [59] extended the Hertz contact force
model to include a hysteresis damping function to represent
the energy dissipated during the impact. The authors separated
the normal contact force given in equation 4 into elastic and
dissipative components as;

Fy = K& +Dé (6)

where § is the relative impact velocity and D is the hysteresis
coefficient given as;

3K(1—¢c?)

D= [ 45

} s %

where () is the initial impact velocity. Therefore the final
normal contact force can be expressed as;

Fy = K§ {1 n W} 8)

Equation 8 is only valid for impact velocities lower than
the propagation velocity of elastic waves across the bodies,
ie,d <1075 % where E is the Young’s modulus and p
is the material mass density [60]. Shivawamy [61] studied
theoretically and experimentally the impact between bodies
and demonstrated that at low velocities, the hysteresis damping
is the key factor for energy dissipation, but at high velocities
exceeding the propagation velocity of elastic waves, energy is
dissipated in a more complicated form.



4) Contact Force Models for Cylindrical Surfaces: The
contact models given by equations 4 and 8 are applicable for
colliding bodies with spherical contact areas. For the case of
cylindrical contact forces, some authors suggest the use of
equation 8 but with an exponent n in the range of 1 to 1.5
[16], [57]. Dietl [62] used the classical solution of contact,
presented by Hertz but with exponent n equal to 1.08 to model
the contact between the journal-bearing elements.

Various models have been put forward for the cylindrical
contact surfaces, such as the Dubowsky and Fruedenstein
model reviewed by Flores et.al in [63] as well as the ESDU-
78035 model, both of which are given as equations 9 and 10
respectively;

LS(Rl — Ry)
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where L is the length of the cylinder. Equations 9 and 10 are
nonlinear function for Fy and require an iterative scheme,
such as Newton-Raphson method to solve for the normal
contact force Fy for a known penetration depth 4.

5 = FN( )+1} (10)

C. Link Flexibility

Another phenomenon of interest in the study of imperfec-
tions in multi-body system is the flexibility of links. A body is
assumed to be rigid if any pair of its material points does not
present relative displacements. In practice, bodies suffer some
degree of deformation. The deformation tends to be so small
that it does not affect the system’s behavior, and therefore
it can be neglected without committing an appreciable error.
There are some important cases in which deformation plays
an important role in the dynamic analysis, for instance in
lightweight links, or in high-speed machinery. The complexity
and size of the equations of motion considering flexibility grow
considerably, since all the variables defining the deformation
must also be considered in the equations [1].

Studies in link flexibility can be broadly classified as those
using modal and nodal coordinates. The advantage of the
modal approach is the small number of degrees of freedom,
thus reducing the computational burden considerably com-
pared to the nodal approach. The modal method, however
requires the pre-calculation of the mode shapes to be used in
before the simulations and is not commonly used compared
to the nodal approach due to the following reasons:

(a) The choice of the vibration modes is not easy, and the
quality of simulation results obtained (besides numerical
aspects) depends exclusively on the quality of the mode
shapes used in the simulations, i.e., on how accurate the
mode shapes can represent the real deformations [64].

(b) The vibration frequencies and modes change as the
flexible body undergoes large rotation motion [65].

For further and more information on comparison of nodal and
modal coordinate systems formulations in flexible multi-body

system dynamics, any interested leader is advised to refer to
[64]

Craig [66] proposed a method that has been used to
represent or model the responses of a flexible body to an
applied load by superimposing several of its modes. Gonclaves
and Ambrosio [67] used this method to model flexible body
systems in order to study road vehicle comfort. Also, Rokach
[68] used this method for one point bend test modeling.

The nodal coordinates approach can be used in two ways,
namely, use of lumped rigid segments and springs, and the
use of Finite Elements. The lumped rigid segments and spring
method divides a deformable body into a number of rigid
segments and springs according to the geometric parameters of
the body. The formulation for rigid multi-body systems which
is developed using Kane’s equations, is the applied [69]. Finite
Element Method (FEM) which employs nodal coordinates has
been proposed as an efficient way of modeling the dynamics of
flexible links by treating the flexible links as Euler-Bernoulli
beams, i.e., deflection of the beams is due to bending only and
hence shear deformations are neglected [70].

FEM involves decomposing a beam into several simple
pieces called elements. The elements are assumed to be
interconnected at certain points known as nodes. For each
element, an equation describing the dynamic behavior of the
element is obtained through an approximation technique. The
elemental equations are then assembled to form an overall
system equation. By reducing the element size, i.e., increasing
the number of elements, the overall solution of the system
equation can be made to converge to the exact solution.

The Finite element approach for the kinematic and dy-
namic analysis of mechanisms and machines was initiated
by Besseling [71]. In his study of discretization methods for
deriving finite dimensional element models for the mechanics
of continua, he pointed at the complete analogy between the
discrete case and the continuous case.

Dumbrowski [72] presented a formulation employing nodal
coordinates to model flexible bodies by using Euler-Bernoulli
beam formulation to model bodies undergoing large defor-
mation. Seo et al. [73] also presented a nodal coordinate
formulation employing two-dimensional beam elements to
represent large deformation flexible bodies.

1) Dynamic Analysis of Flexible Multi-body Systems:
Various dynamic approaches have been employed to formulate
the equations of motion of flexible multi-body systems, of
which the most widely used ones being the Floating Frame
of Reference Formulation (FFRF) and Absolute Nodal Coor-
dinates Formulation (ANCF).

Floating Frame of Reference Formulation (FFRF): In the
FFREF, the equations of motion are expressed in terms of a
coupled set of absolute cartesian and local elastic coordinates.
The absolute cartesian coordinates define the location and the
orientation of a selected body coordinate system, while the
local elastic coordinates define the deformation of the body
with respect to its reference. The elastic coordinates can be
introduced using component mode methods, the finite element
method or experimental identification techniques.

The use of elastic coordinates defined in flexible body
coordinate system in small deformation problems leads to



a simple and constant stiffness matrix, and allows the use
of modal reduction techniques that significantly reduce the
dimensionality problem by eliminating insignificant high fre-
quency modes of vibration. This makes the numerical inte-
gration of the generated equations of motion more efficient.
In addition, the choice of coordinates in the FFRF leads to
a consistent and easy to implement formulation when non-
isoparametric elements such as beams, plates and shells are
considered. The use of this formulation leads to an exact
modeling of the rigid body dynamics, and also leads to zero
strain under an arbitrary rigid body motion. However, this
formulation leads to a highly nonlinear mass matrix as a result
of the inertia coupling between the reference motion and the
elastic deformation.

The FFRF is the most widely used method in the dynamic
simulation of flexible multi-body systems, and has proven to
be efficient in handling problems which contain rigid and
flexible bodies where small deformation assumptions remain
valid. Crucial to the successful and efficient computer im-
plementation of the FFRF is the identification of the body
inertia shape integrals. These inertia shape integrals can be
evaluated in a pre-processor computer program using lumped
or consistent mass approach, and can be expressed in a modal
form [74].

Absolute Nodal Coordinates Formulation (ANCF): Despite
the success and popularity of the FFRF, its use has been
generally limited to the analysis of small deformations. This
is due to two reasons [75]:

(a) In order to justify the use of linear modes for coordinate
reduction in FFRF, the deformations are assumed to be
small.

(b) The use of infinitesimal incremental techniques which
utilize infinitesimal rotation as nodal coordinates re-
quires linearization of kinematic equations and does
not lead to exact modeling of rigid body dynamics.
Hence these techniques are widely employed in struc-
tural analysis but can not be employed to analyze small
deformations

In order to obtain accurate representation of large deformations
in flexible multi-body dynamics, the ANCF has been proposed.
In this formulation, global displacement and slope coordinates
are used to define the configuration of finite elements. By using
global slopes instead of finite and infinitesimal rotations, exact
modeling of the rigid body dynamics can be obtained. Because
in ANCF the nodal coordinates are defined in the global
system, then the use of modal reduction techniques becomes
impractical and as a consequence, the large dimensionality
becomes a problem in this formulation.

Choice of the Coordinates: Any dynamic solution proce-
dure used in flexible multi-body simulations as well as the
degree and type of nonlinearity of the formulation depend
on the choice of coordinates. Different sets of coordinates
may lead to different structures for the dynamic equations,
however the proper selection of the coordinates must take into
consideration the type of the problem to be investigated. The
use of one set of coordinates as compared to other sets, may
prove more efficient in a particular application.

Generally, the choice of a coordinate system in formulation
of equations of motion of flexible multi-body system leads
to fundamental problems related to the selection of the de-
formable body coordinate system, the boundary conditions and
the appropriate set of mode shapes. Despite these fundamen-
tal problems, the FFRF remains the most widely used and
accepted procedure in flexible multi-body simulations due to
the following reasons [75]:

(a) Many of multi-body applications consists of many rigid
bodies and few flexible bodies. There is therefore a
tendency not to compromise the accuracy of the rigid
body analysis, and to use a formulation which is more
efficient in the simulation of the rigid bodies. This can
easily be accomplished by using the FFRF.

(b) The concept of angular velocity is fundamental in the
analysis of multi-body systems particularly when pre-
scribed motion trajectories are considered. In this case,
its much easier to define the angular velocities when
FFRF is used.

(¢) The FFREF is an extension of the Newton-Euler formu-
lation which has been extensively used in the analysis
of multi-body systems consisting of rigid bodies.

(d) Its much easier to develop recursive equations when the
FFRF is used. Therefore, the computational implementa-
tion of FFRF algorithm is very easy and straightforward.

However, these reasons behind the popularity and acceptance
of FFRF by the multi-body community do not make FFRF
a superior formulation as compared to the ANCEF, but the
appropriate choice of either depends entirely on the type of the
problem being addressed. Gerstmayr et al. [76] carried out a
detailed comparison of the ANCF and the FFRF for standard
static and dynamic problems, both in the small and large
deformation regimes. The authors observed that both formu-
lations have comparable performance, and that the choice of
the optimal formulation depends on the problem configuration.
Thus, the authors refuted the recent claims in literature that
the ANCF would have deficiencies compared with the FFRF.
Shabana [75] used a flexible multi-body four-bar mechanism
and a flexible pendulum to investigate the performance of
FFREF, the incremental method and ANCF. He observed that
the results obtained using the three methods agree well in
the case of small deformations and low angular velocities. In
the case of large deformations and low angular speeds, the
author observed that the solutions obtained using the ANCF
and incremental method agree well, but at large deformations
and higher angular speeds, there was significant differences
between the solutions obtained using the two formulations due
to the effect of linearization used in the incremental method.

D. Friction

Another phenomenon of interest in the study of imperfec-
tions in multi-body system is the dry friction in the kinematic
joints. When contacting bodies slide or tend to slide relative
to each other, forces are generated which are tangential to
the surfaces of contact. These forces are usually referred to
as friction forces. Three basic facts about friction have been
experimentally established as follows; the friction force is



proportional to the normal load on the contact, the friction
force acts in a direction opposite to that of the relative motion
between the two contacting bodies, and the friction force is
independent of nominal area of contact [77]. Luminaries of
science such as Coulomb developed friction laws, but there
is still no simple model which can be universally applied by
engineers to calculate the friction force for a given pair of
bodies in contact [78]. In the past three decades, there has
been much interest on the study of friction, and there are many
research papers which focus on the subject [48], [79], [80]

Coulomb friction law of sliding friction represents the
most fundamental and simplest model of friction between dry
contacting surfaces. When sliding takes place, the Coulomb
law states that the frictional force is directly proportional to
the magnitude of normal force at the contact point, where
the constant of proportionality is termed as the coefficient of
friction. The original Coulomb’s friction law is independent of
relative tangential velocity, which in practice is not true since
friction forces have been shown to depend on many factors
such as material properties, temperature, surface cleanliness
and velocity of sliding. Moreover, the original Coulomb’s
friction law does not cater for the stiction phenomena which
occurs when the relative tangential velocity of two impacting
bodies approaches zero. As pointed out by Ahmed et al. [81],
a suitable friction model must be able to detect sliding and
sticking to avoid energy gains during impact. Indeed, the
classical Coulomb dry friction model does not portray the
important physical phenomena which occurs in the contact
between mating surfaces. Moreover, the discontinuity of force
at zero velocity has many drawbacks during numerical sim-
ulations [82]. These drawbacks of classical Coulomb friction
model have led several researchers on multi-body dynamics
[83]-[87] to modify the Coulomb law in order to avoid the
discontinuity of force at zero relative velocity and to obtain
a continuous friction force-velocity relationship. Flores [78]
used a modified Coulomb’s friction law proposed by Ambrosio
[87] which gives the tangential friction force (Fr) as;
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where  is the coefficient of friction, Fy is the normal contact
force, v is the relative tangential velocity, v is the tangential
velocity and ¢4 is a dynamic correction coefficient expressed
as,

Cqg = O lf 'UTS’UO
VT — Vo .
= — it v <wr <y
U — o
=1 if UTZ’UI

in which, vy and v; are the given tolerances for the velocity.
The correction factor prevents the friction force from changing
direction for almost zero values of the tangential velocity. The
advantage of this modified Coulomb’s law is that, it allows
numerical stabilization of the integration algorithm. However,
it does not account for stiction phenomena of the contacting
surfaces. This led Flores [78] to recommend that friction
laws be developed which account for stick-slip condition in
imperfect joints of multi-body mechanical systems.

III. MODELING MULTI-BODY SYSTEMS

Computational dynamic analysis of any mechanical system
whether with ideal or real joints involves solving numerically
the equations of motion of the system for the responses.
The process of formulating the equations which govern the
behavior of the system is called modeling the system, while
the process of numerically solving the generated equations of
motion in order to analyze the system’s response is termed
as simulation. In this section the procedures and approaches
which have been employed in generating and computationally
solving the equations of motion of a multi-body system are
reviewed.

A. Coordinate Systems

The first problem encountered at the time of modeling the
motion of a multi-body system is that of finding an appropriate
system of coordinates which will allow one to clearly define
at all times the position, velocity and acceleration of all bodies
of the mechanical system [88]. There are several ways to solve
this problem and different authors have opted for one way or
another depending on their preferences. There are two types of
coordinate systems which can be adopted during the process
of modeling of a multi-body mechanical system: The first type
is that of using a system of Independent Coordinates [1], [88]—
[90] whose number coincides with the number of degrees of
freedom of the multi-body system, while the second type is the
use of Dependent Coordinates [1], [88]-[90] whose number
is greater than the number of degrees of freedom of the multi-
body system.

Studies have shown that generally a system of Indepen-
dent Coordinates is not an acceptable solution, since they
directly determine the position of the input links but not the
position of the other links, hence they cannot be used to
define unequivocally at all times the position, velocity and
acceleration of the entire multi-body system [88]. Dependent
Coordinates are more preferred because they describe the
multi-body system more easily, and are related by the algebraic
constraint equations which are generally non-linear and play
a vital role in the kinematics and dynamics of multi-body
system. The number of these algebraic constraint equations
relating the dependent coordinates, is equal to the difference
between the number of selected dependent coordinates and the
number of degrees of freedom of the multi-body system [90].

Dependent Coordinates are further categorized as, Relative
Coordinates and Cartesian Coordinates.

(a) Relative Coordinates : These define the position of
each link in relation to the previous link in the kine-
matic chain by using a parameter which corresponds
to the relative degree of freedom allowed by the joint
connecting the links. In case of a planar multi-body
system, if two links are connected by a revolute joint the
coordinate defining their relative position is an angle,
while if the two links are connected by a prismatic
joint, their relative position is defined by means of a
distance. Relative coordinates lead to a system with
a minimum number of dependent coordinates and are



suited for open-loop multi-body systems since the num-
ber of relative coordinates for a open-loop configuration
is equal to the number of degrees of freedom, and hence
there will be no required constraint equations. Although
the relative coordinates lead to reduced number of de-
pendent coordinates, they result to equations of motion
with small but full matrices which are computationally
intensive to evaluate. Due to this, relative coordinates are
not widely used as compared to cartesian coordinates.
(b) Cartesian Coordinates : This set of dependent coordi-
nates try to overcome the limitations of relative coor-
dinates by directly defining using three coordinates, the
absolute position of each link in the multi-body system.
The three coordinates for each link are normally ob-
tained by determining the position of a point on the link
(preferably the center of gravity) with two x and y linear
coordinates, and also determining the angular orientation
of the body relative to a global inertial axis. Although
the cartesian coordinates lead to a large number of de-
pendent coordinates as compared to relative coordinates,
they result to equations of motion with large but sparse
matrices (matrices with very few non-zero elements)
which can be used to make the formulation numerically
efficient. Garcia de Jalon and Bayo [88] modified these
cartesian coordinates by moving the reference points
to the joints so that each link has two points defined
with cartesian coordinates. This set of coordinate system
is called Natural Cartesian Coordinate and leads to a
decrease in the number of dependent coordinates due to
the elimination of angular coordinates, and the sharing
of coordinates by two links at the joint connecting
them. Although the natural cartesian coordinates lead to
slightly lower dependent coordinates and hence compu-
tationally effective formulation as compared to absolute
cartesian coordinates, computational implementation is
not as easy as the use of absolute cartesian coordinates
(78]
For further and more information on comparison of cartesian
and relative coordinate systems, any interested leader is ad-
vised to refer to [88]. Due to its simplicity and ease of com-
putational implementation, Absolute Cartesian Coordinates are
widely employed in formulating the equation of motion of
multi-body mechanical system.

B. Computational Kinematic Analysis of Multi-body Systems

1) Generalized Coordinate Vector: The translational mo-
tion of a rigid body i can be defined by the vector R; that
describes the position of the origin of the body reference
coordinate system with respect to the global coordinate system,
while the orientation of the body with respect to global
coordinate system can be described using the angle 6; as
shown in Figure 2.

Therefore, the vector q; of the generalized absolute cartesian
coordinates of body i in a multi-body system can be repre-
sented as,

W = o’
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XY is the global coordinate system, X;Y; is the coordinate
system of body i, up; is the position vector of point P on
body i with respect to the X;Y; coordinate system, R; is the
position vector of the origin of X,;Y; coordinate system with
respect to the the global XY coordinate system, rip is the
position vector of point P on body i with respect to the global
XY coordinate system, and 6; is the angle in which the X,Y;
coordinate system is oriented relative to the the global XY
coordinate system.

The global position vector of an arbitrary point P on body
i can be represented as;

Ri + upj
= Ry + Aitup;

rip
12)

Where A; is the transformation matrix from the global XY
coordinate system to the X,;Y; coordinate system, given as;

A - (cos@i —sin@i)

sinf; cosb;

and up; is the coordinates of point P on body i measured
about the coordinate system of body i, and given as;

Up; = Lpi
' Ypi

A multi-body system consisting of ny rigid bodies, has 3 x
ny absolute cartesian coordinates. Hence a vector q of the
generalized coordinates of a multi-body system is defined as;

T
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which can be written as,

q = |:q1 Lt [ LY & TOPPRIPPRIPPPRIPR: qnb}T

where qj is the vector of generalized cartesian coordinates of
body i, given as;

q; = [Rm Ry 91]

Kinematic constraints impose restrictions on the relative
motion between bodies, and are classified as either joint
kinematic constraints or driving constraints.



2) Formulation of Joint Constraints: The algebraic joint
constraint equations are formulated in terms of the absolute
cartesian coordinates that describe the position and orientation
of the rigid bodies with respect to a fixed global coordinate
system.

Formulation of Ground Constraints: A body that has zero
degrees of freedom is called ground or fixed link. If i is a
ground link, the algebraic kinematic constraints are given as,

RiI—C1 =0
Ry —Cy =0
0, —C3 = 0

where C7, Cy and C3 are constants. These constraints elimi-
nate the translation and rotational freedoms of the body. These
constraint equations can also be written as,

qi—C =0

where

qi = Riy

C =1 Cy

If the global coordinate system coincides with the coordi-
nate system of fixed link 7, then all the constants are equal to
Zero.

Formulation of Revolute Joint Constraints: As shown in
Figure 4, bodies i and j are connected by a revolute joint at
point P called the joint definition point.
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Fig. 3. Planar revolute joint connecting bodies i and j

Throughout the motion, the revolute joint requires that
point P on body i (P;) always remains in contact with point
P on body j (P;). Mathematically, this kinematic constraint
condition for the revolute joint can be expressed as,

Lip = Tjp
Rl + Ajup; = Rj + Ajﬂpj
Ri + A up; — Rj — Ajﬂpj =0 (13)
where ip; = [vp; ypi)T and Up; = [xzpj ypj]T are the

local position vectors of point P defined with respect to the
coordinate systems of body i and body j respectively.

Equation 13 can be written explicitly as,
0 — Rw + COS 91 —sin 91‘ T p; . ij .
~ \ Ry sin@; cosb; Ypi Ry

cosf; —sinf; Tpj
sinf; cosd; Ypj

which when evaluated gives two scalar equations that eliminate
the freedom of the bodies to translate relative to one another.

Formulation of Prismatic Joint Constraints: A prismatic
joint removes two degrees of freedom from a planar multi-
body system, that is, there is neither rotation motion between
the bodies nor a relative translation motion in the direction
perpendicular to the joint axis. Therefore, a planar prismatic
joint is represented by two independent algebraic constraint
equations.

Body i

Y

Fig. 4. Planar prismatic joint connecting bodies i and j

A constraint equation that eliminates the relative rotation
between bodies i and j can be written as,

91-—9]-—0 - 0

C' is a constant defined by C' = 0;, — 0;, where 0;, and 0;,
are the initial orientation angles for body i and j respectively.
Let
(a) 7;;p be a position vector connecting two arbitrary points
P; and P; on bodies i and j respectively, and lying on
the axis of the joint.

(b) h; be a vector perpendicular to the joint axis and defined
on body i. This vector is selected to join point P; and
an arbitrary point Q on body i.

In order to eliminate the relative translation between the two
bodies i and j along the axis perpendicular to the joint axis,
the vectors r;;p and h; must always remain perpendicular, and
hence their dot product must be zero.

(14)

hi.’l"ijp =0 (15)
rijp = R, + Ajup; — Rj — Ajﬂpj
hi = Ai(up; —Uq:)
Equation 14 and 15 can be combined to yield two constraint
equations for a planar translational joint as,

0i —0; — (0io — 0;0)
([Ai(upi - ﬂQi)} - [Ri + Ajup; — R — AjﬂPJ} ) B (896)



The first equation in 16 is a linear function of the rotational
coordinates of body i and body j, while the second equation
is a nonlinear equation of the absolute coordinates of the two
bodies.

Formulation of Driving Constraints: Unlike the joint con-
straints which depend solely on the system coordinates, driv-
ing constraints describe the specified motion trajectories and
therefore may depend on the system generalized coordinates
as well as time. The maximum number of driving constraints
imposed on the motion of a given multi-body system must
equal the number of degrees of freedom of the system.

3) Position Analysis: For kinematically driven systems,
the total number of algebraic constraint equations (n.) must
be equal to the number of generalized coordinate systems
(n). Hence the constraint equations vector contains n = n,
algebraic equations that describe the joint constraints and
driving constraints. Since the driving constraints depend also
with time, the constraint equations vector can be written as,

Clat) = [Ci(at) Cala,t)

This equation contains n nonlinear scalar equations which can
be solved for the n unknown generalized coordinates given in
a vector form as,

q = [‘h q2 4q3

There are numerical procedures used to solve a system of non-
linear algebraic equations, but the mostly preferred algorithm
is the Newton-Raphson algorithm which involves linearizing
the set of nonlinear equations of kinematic constraints to get

the first order approximation of equation C(q,t) = 0 as,
CpAgi = —C(q;,1) 17

where,
(a) C,, is the Jacobian matrix at iteration point i, given as,

801 801 801 801
dq1  Oq2  Ogqz T 9qn
9Cy 9Cy 9Cs 9Cs
9q1  Oqz Ogqz 7T 9qn
8C3 603 8C3 803
Oqi = dq1  dqa  Oq3 " 9qn (18)
9C, 9C, 9Cn 9Chy
oq1 9q2 dqsz T 9qn

For kinematically driven system, the Jacobian matrix is
a square non-singular matrix.
(b) Ag; is the vector of Newton differences at iteration point
i
(¢) C(q,,t) is the vector of constraint equations at iteration
point i.
Since the jacobian matrix is non-singular, the vector of Newton
differences Ag; can be solved from equation 17. This vector
can be used to iteratively update the vector of the systems
coordinates as ¢;+1 = ¢; + Ag;. The updated vector ;11
is then used to reconstruct equation 17 to solve for Ag;11
which can then be used again to update the vector of the
system coordinates g;12 = ¢;+1 + Ag;+1. This iteration

process continues until the solution converges provided that
the assumed initial solution for the system coordinates was
chosen to be near the actual solution.

4) Velocity Analysis: Differentiating the vector of constraint
equations with respect to time yields a vector of velocity
constraint equations as,

Coqg = —C (19)

where Cj is the constraint Jacobian matrix given by equation
18 and C; is the vector of partial derivatives of the constraint
equations with respect to time, which is given as,

Ot _ [(')Cl 0C> (20)

aCs aC, ] T
dt dt

T e 7
If all the constraint equations are not explicit functions of time,
then the vector C} is identically a zero vector. Equation 19 is
a linear system of algebraic equations in terms of ¢ and can
be solved easily for ¢ by any usual methods for systems of
linear equations.

5) Acceleration Analysis: Differentiating the vector of ve-
locity constraint equations given in equation 19 yields a vector

of acceleration constraint equations as,
Cqi = —(Cqd)qd — 2Cq1q — Cu 2n

where
1) Cy is the time derivative of the Jacobian matrix given

as,
8 fac,] o [acy] o [acy 3 [acy]
ot _6(11 | ot _qu | ot _8q3 """ ot _an_
afoac,] 8 [acs] o [acs 2 [ac,
Ot | dqr | Ot | Oga | Ot | Oqs | """ ot | Oqn
_| alacs] o [acs] o [acs 2 [acs]
th_ ot L 9q1 ] ot L 9qa2 ] ot L 3q3:| """ ot _3(]7,, ] 22)
afac,] o [oc,] o ac, a2 fac,]
ot L 9q1 | ot L 9q2 | ot L dqs | ot _Bqn |

2) Cy is the vector of second partial derivatives of the
constraint equations with respect to time, which is given
as,

8%C,
........ e

— | 9%C1 9%C. 9%Cs
Cu [ dtz d? T di?

T
|" e
Equation 21 is a linear system of algebraic equations in terms
of ¢ and can be solved easily for ¢ by any usual methods for
systems of linear equations.

Therefore, computational kinematic analysis of a multi-body
system is performed by solving the set of equations 17, 19 and
21 for g, ¢ and ¢ respectively. This formulation can easily be
implemented on a digital computer, and made available for
kinematic analysis of a large class of multi-body mechanical
systems.

C. Computational Dynamic Analysis of Multi-body Systems

Generally, the equation of motion of a multi-body system
can be written as,

Mq = Qe"‘Qc (24)



where M is the mass matrix of the system, ¢ is the vector of
the system acceleration, (). is a vector containing the external
forces which are known and (). is a vector of the reaction
forces which are unknown and should be calculated.

The joint reaction forces can be expressed in terms of the
Jacobian matrix of the constraint equations and a vector of
Lagrange multipliers as,

Qc:

where A is the vector that contains m unknown Lagrange
multipliers. Hence equation 24 becomes,

Mi+CIN = Q.

T
—CTA

(25)

Equation 25 represents n scalar equations but with n + m
unknowns. In order to have a sufficient number of equations,
it becomes necessary to supply m more equations. This is
achieved by considering the algebraic constraint equations
simultaneously with the differential equations of motion. Dif-
ferentiating the vector of algebraic constraint equations twice
with respect to time and arranging the terms so as to isolate
the generalized acceleration of coordinates, the acceleration
constraints are gotten as represented in equation 21. Therefore
equation 21 is combined with equation 25 to yield a system
of Differential Algebraic Equation (DAE) which can be rep-
resented as,

(6 ) (3) = (cna “sena e
Cq 0 A 7(qu)qq - Qthq - Ctt

If we let —(Cy4¢)qq — 2C41¢ — Cy = 7y then, equation 26 can
be written as,

(9 )(5) = (%)

Therefore, equation 27 shows that, mathematically the simula-
tion of a constrained multi-body system requires the solution
of n differential equations coupled with a set of m algebraic
equation. Dynamic analysis of a multi-body mechanical sys-
tem involves entirely the solving of acceleration vector § and
the Lagrange multipliers vector A. Once the generalized accel-
eration vector ¢ is obtained, it can be integrated once and twice
to get the generalized velocity vector ¢ and the generalized
position vector ¢ of the multi-body system respectively.

The differential algebraic equation 27 can be solved for
G and A either directly or inversely. In inverse solution, an
expression for the accelerations is first obtained from equation
25 as,

27)

i =M'Q.—M'CIA
which can be substituted back in equation 21 to solve for
Lagrange multipliers.

If the initial vectors ¢ and ¢ are known, then equation 27
can be solved for ¢ and A by direct integration. In majority of
practical cases, the direct solution is preferred since A is ob-
tained without the need for special call to an inverse dynamic
module. However the direct solution of such type of equations
and their integration with time introduces several numerical
difficulties, namely, the existence of an uniqueness of solutions
and instability for higher order systems [88]. Special numerical

algorithm which use multi-stepping procedures and have the
ability to deal with stiff systems are often required to solve
such a set of differential algebraic equations directly [91], [92].

An alternative and preferred approach for the direct solution
of the equations of motion given in equation 27 is to transform
the set of DAE to its governing set of ordinary differential
equations (ODE) which are then solved by integration with
time. However, the substitution of the algebraic equations of
the DAE system by their ODE counterparts introduces mild
instabilities and drift problems during the integration process.
The drift phenomenon means that for long simulations, the
original constraint equations for position and velocity begin
to be violated during the integration process. This happens
because the equations of motion represented by differential
algebraic equation 27 does not use explicitly the position and
velocity equations associated with the kinematic constraints.
Therefore, special procedures must be adopted to avoid or
minimize this drift phenomenon. Several methods to solve
this problem have been suggested and tested, of which the
most common are; Baumgarte Stabilization Method (BSM)
[93], the Coordinate Partitioning Method (CPM) [94] and the
Augmented Lagrangian Formulation (ALF) [95].

In CPM, the generalized coordinates are partitioned into
independent and dependent sets of coordinates. The numerical
integration is carried out for the independent generalized
coordinates. Then, the constraint equations are solved for
the dependent generalized coordinates using Newton-Raphson
method. The advantage of this method is that it satisfies all
the constraints to the level of precision specified and maintains
good error control. However, it suffers from poor numerical
efficiency due to the requirement for the iterative solution
for dependent generalized coordinates in the Newton-Raphson
method [88], [89], [94].

ALF is based on Hamiltons principle and the constraint
equations are taken into account using a penalty approach. This
method involves solving the system’s equations of motion,
represented by Equation 27 using an iterative process. The
form of the constraint equations is similar to the form proposed
in the Baumgartes method but it has the advantage of handling
redundant constraints in the process [88], [95]

Due to simplicity and easiness for computational imple-
mentation, the Baumgarte Stabilization Method is the most
preferred technique to overcome the drawbacks of the direct
integration of the equations of motion of a multi-body system.
Although BSM gives good results in most of the applications,
it does not help in the cases of some particular configuration
of the systems, such as near kinematic singularities [88]. The
aim of the BSM is to replace the differential equation 21 by
the following equation [93],

C+2aC+3°C =0

which is a differential equation for a closed loop system in
terms of kinematic constraint equation C'(q, t). The terms 2aC
and 3%C play the role of feedback control, and the parameters
« and (8 are termed as feedback parameters.

The principle of BSM is to damp out the acceleration
constraint violations by feeding back the violations of the



position and velocity constraints. Thus, by using the Baum-
garte’s approach, the equations of motion for a dynamic system
subjected to holonomic constraints are represented as,

M CF q\ _ Qe
(& §)() = (o) o

The challenge in Baumgarte’s method is the criterion for
choosing the adequate values of « and 3. Initially, Baumgarte
[93] pointed out that the stabilizing values of « = = 5 are
a good choice for a multi-body system made up rigid bodies,
however a lot of research work has been done in order to
modify the first principle Baumgarte method and also to come
up with criteria for choosing optimal values of the feedback
parameters [96]-[99]

There is no precise method for choosing the most correct
values for the feedback parameters for general cases. The
choice of o and (3 usually involves the use of trial-and-error-
procedure, but these feedback parameters should be equal to
one another, and the their typical values range from 1 to 20
[88], [97]

IV. CONCLUSION

A thorough literature on dynamic analysis of multi-body
mechanical systems when imperfections (imperfect kinematic
joints and the link flexibility) are considered has been critically
reviewed. From the carried review it has been observed that,
the serious consequences of the imperfect kinematic joints on
the dynamic response of the mechanical system have attracted
many theoretical and experimental investigations over the last
three decades. However:

(a) Many of the tribological effects at the joint, such as
the impact forces, friction, lubrication and wear have
been studied either individually or in some rare instances
considering a combination of few effects, and thus very
few formulations present comprehensive models for pre-
dicting the dynamic response of multi-body mechanical
systems with imperfect joints.

(b) A lot of emphasis has been laid on rigid multi-body
mechanical systems. In the current efforts to search for
higher efficiency, low cost and greater productivity in
machines, links are currently being designed to be of
lighter weight, to carry larger loads, and to operate at
higher speeds. The light members are more flexible and
hence the standard rigid body mechanism models can no
longer be used to accurately predict the behavior of these
systems. Therefore, in order to fully exploit the potential
offered by flexible links, the effect of flexibility must be
accounted for in a dynamic model. This demands for a
comprehensive study on flexible multi-body dynamics.

(c) Many researchers have modeled only one joint in the
considered mechanisms as a real (imperfect) joint while
assuming the other joints to be ideal (perfect). Although,
the results from such experimental and analytical models
have been shown to provide important insights on the
behavior of mechanical systems with imperfect joints,
the models do not allow for study of the interactions
of multiple kinematic imperfect joints. Furthermore a

real mechanical system does not have only one real
joint, but practically all joints are real. This led several
researchers such as Flores (2004) [78] and Cheriyan
(2006) [100] to strongly recommend for their work to
be extended to include multi-body mechanical systems
with multiple imperfect joints, and with a variety of
joints such as prismatic and universal joints. Few recent
papers by Erkaya and Uzmay (2009-2010) [24], [30]
have considered the nonlinear dynamic analysis of multi-
body systems with two imperfect joints. However in
these research papers, only mechanisms with rigid links
have been considered and the interaction effects of the
imperfect joints on the overall response of a multi-body
system were not investigated.

(d) The dry friction at the joint has been widely modeled by
modifying the classical Coulomb friction law to avoid
the discontinuity of force at zero relative velocity and to
obtain a continuous frictional force-velocity relationship.
Although this modification of Coulomb’s law allows for
the numerical stabilization of the integration algorithm,
it does not account for the stiction phenomena of the
contacting surfaces which occurs when the relative tan-
gential velocity of the two impacting bodies approaches
zero. This led Flores (2004) [78] in his PhD Dissertation
to strongly recommend for his work to be extended to
model and include stick-slip friction at imperfect joints
of a multi-body mechanical system.

(e) Although dynamic modeling work for the flexible link-
age multi-body systems has attracted more attention and
gained some achievements, nonlinear dynamic analysis
caused by multiple imperfect joints has not been carried
out more widely.
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