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Review of ANFIS and its Application in Control of

Machining Processes

Kabini S.K., Ikua B.W. and Nyakoe G.N.

Abstract—Adaptive Neural Fuzzy Inference Systems (AN-

FIS) are increasingly becoming popular in the modern world.

This is due to their ability to model or represent vagueness

in day to day activities or processes. These systems have

the potential to adaptively control processes that present a

difficulty to the conventional control techniques due to their

ability to predict the likely outcome given a set of conditions

or inputs. This paper looks at ANFIS and its applications

in multidisciplinary fields and specifically, its use in control

of machining processes. Some potential areas of application

ANFIS are highlighted.
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I. INTRODUCTION

THe design of modern control systems is

characterized by stringent performance and

robustness requirements and therefore relies on

model-based design methods. This introduces a

strong need for effective modeling techniques. Many

systems are not amenable to conventional model-

ing approaches due to strongly nonlinear behaviour
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and lack of precise knowledge of the process un-

der study [1]. Nonlinear identification is therefore

becoming an important tool which can lead to

improved control systems along with considerable

time saving and cost reduction. Among the different

nonlinear identification techniques, methods based

on fuzzy sets are gradually becoming established

[2].

Adaptive control is a method of designing a

controller with some adjustable parameters and an

embedded mechanism for adjusting these param-

eters. Adaptive methods have been used mainly

to improve the controllers performance online [3].

For each control cycle, the adaptive algorithm is

normally implemented in three basic steps, namely,

1) Observable data is collected to calculate the

controllers performance.

2) The controller’s performance is used to cal-

culate the adjustment to a set of controller

parameters.

3) The controller’s parameters are then adjusted

to improve the performance of the controller

in the next cycle.

Normally, an adaptive controller is designed

based on one of the available techniques. Each
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technique is originally designed for a specific class

of dynamic systems. The controller is then adjusted,

as data is collected during run time to extend its

effectiveness to control a larger class of dynamic

systems.

ANFIS, which is derived from the term Adaptive

Network Fuzzy Inference System, was first pro-

posed by Jang in 1993, [4], and later changed to

Adaptive Neural Fuzzy Inference System. This sys-

tem is designed to allow IF-THEN rules and mem-

bership functions (fuzzy logic) to be constructed

based on the historical data and also includes the

adaptive nature for automatic tuning of the mem-

bership functions [5].

ANFIS refers to an inference system that in-

tegrates the best features of neural network and

fuzzy logic. It is a system that predicts input/output

relationship of given set of data [6]. It consists

of nodes and directional links through which the

nodes are connected. Part or all of the nodes are

adaptive, which means that their outputs depend on

the parameter(s) pertaining to these nodes and the

learning rule specifies how these parameters should

be changed to minimize the error measure [4].

The basic learning rule of adaptive networks is

based on gradient descent and the chain rule which

was proposed by Werbos [7] in the 1970’s. However,

since the basic learning rule is based the gradient

method which is slow and has tendency to become

trapped in local minima, Jang proposed a hybrid

learning rule which sped up the learning process

substantially. Both the batch learning and the pattern

learning of the hybrid learning rule are discussed

below.

II. STRUCTURE OF ANFIS

ANFIS is composed of five functional blocks as

shown in Fig. 1. These are:

• a rule base containing a number of fuzzy IF-

THEN rules

• a database which defines the membership func-

tions of the fuzzy sets used in the fuzzy rules

• a decision-making unit which performs the

inference operations on the rules

• a fuzzification interface which transforms the

crisp inputs into degrees of match with linguis-

tic values

• a defuzzification interface which transform the

fuzzy results of the inference into a crisp out-

put.

Usually, the rule base and the database are jointly

referred to as the knowledge base.
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Fig. 1. Block representation of ANFIS

III. LEARNING ALGORITHMS

A. Architecture of ANFIS and its basic learning rule

An adaptive neural network (see Fig. 2) is a

multilayer feedforward network in which each node

performs a particular function called node function

on incoming signals as well as a set of parameters
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pertaining to this node [8]. The formulas for the

node functions may vary from node to node, and the

choice of each node function depends on the overall

input-output function which the adaptive network is

required to carry out [4]. The links in an adaptive

network only indicate the flow direction of signals

between nodes; no weights are associated with the

links. To reflect different adaptive capabilities, circle
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Fig. 2. An Adaptive network

and square nodes are used in an adaptive network.

A square node which is an adaptive node has

parameters while a circle node which is fixed node

has none. The parameter set of an adaptive network

is the union of the parameter sets of each adaptive

node. In order to achieve a desired input-output

mapping, these parameters are updated according

to given training data and a gradient-based learning

procedure [9].

As an example, suppose that a given adaptive

network has L layers and the kth layer has k nodes.

The node in the ith position of the kth layer can

be denoted by k, i and its node function (or node

output) by Ok
i . Since a node output depends on its

incoming signals and its parameter set, then;

Ok
i = Ok

i (O
k−1
i , ...Ok−1

](k−1), a, b, c, ...) (1)

where a, b, c, etc., are the parameters pertaining to

this node, and ] represents a number indicating the

position of the node in the layer. Ok
i is used as both

the node output and node function.

Assuming that the given training data set has P

entries, the error measure for the pth (1 ≤ p≤ P )

entry of training data can be defined as the sum of

squared errors:

Ep =

](L)∑
m=1

(Tm,p −OL
m,p)

2 (2)

where Tm,p is the mth component of pth target

output vector, and OL
m,p is the mth component of

actual output vector produced by the presentation

of the pth input vector. The overall error measure

is;

E =
P∑
p=1

Ep (3)

In order to develop a learning procedure that im-

plements gradient descent in E over the parameter

space, first the error rate ∂E
∂O

for pth training data

and for each node output O is calculated. The error

rate for the output node at (L, i)can be calculated

from [4]:

∂Ep
∂OL

i,p

= −2(Ti,p −OL
i,p) (4)
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For the internal node at (k, i), the error rate can be

derived by the chain rule:

∂Ep
∂Ok

i,p

=

]∑
m=1

(k + 1)
∂Ep
∂Ok+1

m,p

∂Ok+1
m,p

∂Ok
i,p

(5)

where 1 ≤ k ≤ L - 1. That is, the error rate

of an internal node can be expressed as a linear

combination of the error rates of the nodes in the

next layer. Therefore for all 1 ≤ k ≤ L and 1 ≤ i

≤ ](k), we can find ∂Ep

∂Ok
i,p

by Eqns. 4 and 5. If α

is a parameter of the given adaptive network, then

Eqn. 5 becomes;

∂Ep
∂α

=
∑
O∗∈S

∂Ep
∂O∗

∂O∗

∂α
, (6)

where S is the set of nodes whose outputs depend on

α. Then the derivative of the overall error measure

E with respect to α is,

∂Ep
∂α

=
P∑
p=1

∂Ep
∂α

(7)

Accordingly, the update formula for the generic

parameter α is,

∆α = −η∂E
∂α

(8)

in which η is a learning rate. The learning rate can

be further expressed as [4];

η =
k√∑
α( δE

∂α
)2

(9)

where k is the step size, the length of each gradient

transition in the parameter space. Usually, the value

of k is changed to vary the speed of convergence.

There are two learning algorithms for adaptive

networks. With the batch learning or off-line learn-

ing, the update formula for parameter α is based on

Eqn. 7 and the update action takes place only after

the whole training data set has been presented, i.e.,

only after each epoch or sweep. On the other hand, if

the parameters are to be updated immediately after

each input-output pair has been presented, then the

update formula is based on Eqn. 6 and is referred

to as the pattern learning or on-line learning.

B. Hybrid learning rule: Batch (off-line) learning

Hybrid learning rule combines the gradient

method and the least squares estimate (LSE) to

identify parameters [10]. If the adaptive network

under consideration has only one output, then

output = F (~I, S) (10)

where ~I is the set of input variables and S is the set

of parameters. If there exists a function H such that

the composite function H◦F is linear in some of the

elements of S, then these elements can be identified

by the least squares method. More formally, if the

parameter set S can be decomposed into two sets

S = S1 ⊕ S2 (11)

where ⊕ represents sum such that H ◦F is linear in

the elements of S2, then upon applying H to Eqn.

10, we have;

H(output) = H ◦ F (~I, S) (12)

which is linear in the elements of S2. Now given

values of elements of S1, training data which can

be denoted by P , can be input into Eqn. 12 and a

matrix equation obtained:

AX = B (13)

where X is an unknown vector whose elements are

parameters in S2. Let |S2| = M , then the dimensions
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of A, X and B are P × M,M × 1 and P × 1,

respectively. Since P , the number of training data

pairs is usually greater than M , the number of linear

parameters, this is an overdetermined problem, and

generally there is no exact solution to Eqn. 13.

Instead, LSE of X and X∗, is sought to minimize

the squared error ‖AX−B‖2. The most well-known

formula for X∗ uses the pseudo-inverse of X [6].

X∗ = (ATA)−1ATB (14)

While Eqn. 14 is concise in notation, it is expen-

sive in computation when dealing with the matrix

inverse and, moreover, it becomes ill defined if

ATA is singular. As a result, sequential formulas are

employed to compute the LSE of X . This sequential

method of LSE is more efficient, especially when M

is small and can be easily modified to an on-line

version i.e., for systems with changing characteris-

tics. Specifically, let the ith row vector of matrix A

defined in Eqn. 13 be aTi and the ith element of B

be bTi , then X can be calculated iteratively using the

following sequential formulas in [6], [11];

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (15)

Si+1 = Si −
Siai + 1aTi+1Si
1 + aTi+aSiai+1

(16)

for i=0,1,...,P-1, where Si is the covariance matrix,

and the least squares estimate X∗ is equal to Xp.

The initial conditions to bootstrap Eqn. 15 and 16

are X0 = 0 and S0 = γI , where γ is a positive large

number and I is the identity matrix of dimension

M ×M . When dealing with multi-output adaptive

networks, output in Eqn. 10 is a column vector and

Eqns. 15 and 16 still apply except that bTi is the ith

row of matrix B.

The gradient method and the least squares es-

timate can be combined to update the parameters

in an adaptive network. Each epoch of this hybrid

learning procedure is composed of a forward pass

and a backward pass. In the forward pass, input

data is supplied and functional signals go forward

to calculate each node’s output until the matrices

A and B in Eqn. 13 are obtained. The parameters

in S2 are identified by the sequential least squares

formulas in Eqns. 15 and 16. After identifying

parameters in S2, the functional signals keep going

forward until the error measure is obtained. In the

backward pass, the error rates or the differential

error measure with respect to each node output, (see

Eqns. 4 and 5) propagate from the output end toward

the input end, and the parameters in S1 are updated

by the gradient descent method in Eqn. 8.

For given fixed values of parameters in S1, the

parameters in S2 thus found are guaranteed to be

the global optimum point in the S2 parameter space

due to the choice of the squared error measure. Not

only does this hybrid learning rule decrease the di-

mension of the search space in the gradient method,

but, in general, it also cuts down substantially the

convergence time.

Taking an example of one-hidden-layer back-

propagation neural network with sigmoid activation

functions. If this neural network has p output units,

then the output in Eqn. 10 is a column vector. Let

H(◦) be the inverse sigmoid function given by,

H(x) = ln(
x

1− x
) (17)
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then Eqn. 12 becomes a linear function such that

each element of H is a linear combination of the

parameters pertaining to layer 2. In other words,

S1 and S2 are the thresholds of hidden and output

layers, respectively. Therefore, the back-propagation

learning rule can be applied to tune the parameters

in the hidden layer, and the parameters in the output

layer can be identified by the least squares method.

However, by using the least squares method on the

data transformed by H(◦), the parameters that are

obtained are optimal in terms of the transformed

squared error measure instead of the original one.

C. Hybrid learning rule: Pattern (on-line) learning

If the parameters are updated after each data pre-

sentation, then this is referred to as pattern learning

or on-line learning. This learning paradigm is vital

to the on-line parameter identification for systems

with changing characteristics. To modify the batch

learning rule to its on-line version, the gradient

descent should be based on Ep (see Eqn. 5) instead

of E.

For the sequential least squares formula to ac-

count for the time-varying characteristics of the

incoming data, there is need to decay the effects of

old data pairs as new data pairs become available.

This problem is well studied in the adaptive control

and system identification literature and a number of

solutions are available [11]. The simplest method

is to formulate the squared error measure as a

weighted version that gives higher weighting factors

to more recent data pairs. This amounts to the

addition of a forgetting factor λ to the original

sequential formula:

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (18)

Si+1 =
1

λ
[Si −

Siai + 1aTi+1Si
λ+ aTi+aSiai+1

] (19)

for i=0,1,...,P-1, where the value of λ is between 0

and 1. The smaller λ is, the faster the effects of old

data decay become.

IV. APPLICATION OF ANFIS IN THE CONTROL

OF MACHINING PROCESSES

ANFIS has been applied in control of some

machining processes. It is mainly employed in

processes that present a difficulty to the conven-

tional control processes. This could be due to

unpredictable variation of the process parameters

or unavailability of complete information on the

parameters [12]. Some cases where ANFIS has been

employed in the control of machining processes

include wire electro discharge machining (WEDM,

grinding, tool condition monitoring, and boring op-

erations).

An ANFIS based Fuzzy Logic Controller for the

control of chatter vibration in cylindrical grinding

process was developed in [13]. ANFIS was used to

generate membership functions and rule base for a

fuzzy logic controller. The ANFIS was trained by

data obtained from a dynamic model for the process.

The ANFIS based FLC controller was validated

through a series of experiments. The controller was

found to effectively reduce vibrations from a range

of 10−1µm to a range of 10−2µm. The controller

was implemented as shown in Fig. 3
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An adaptive neuro-fuzzy inference system (AN-

FIS) model for the prediction of the white layer

thickness (WLT) and the average surface roughness

in wire electrical discharge machined parts which

are functions of the process parameters was devel-

oped in [14]. This was due to two facts. One is

that wire electrical discharge machined surfaces are

characterized by their roughness and metallographic

properties and, two is that, surface roughness and

white layer thickness (WLT) are the main indica-

tors of quality of a component for WEDM. Pulse

duration, open circuit voltage, dielectric flushing

pressure and wire feed rate were taken as model’s

inputs. The model combined modeling function of

fuzzy inference with the learning ability of artificial

neural network. A set of rules was generated directly

from the experimental data. The model’s predictions

were verified with experimental work.

An ANFIS for tool condition monitoring (TCM)

of twist drill wear was developed in [15]. A multi-

layer feed-forward neural network and a back prop-

agation training algorithm for ANFIS were used.

The algorithm utilized vibration signature analysis

as the main and only source of information from

the machining process.

A neural-fuzzy inference scheme was applied to

predict the flank wear from cutting force signals

during end-milling process in [16]. In this work,

construction of an ANFIS based system that would

provide a linguistic model for the estimation of tool

wear from the knowledge embedded in the neu-

ral network contribution was proposed. Machining

experiments conducted using the proposed method

indicated that, by using appropriate maximum force

signals, the flank wear could be predicted within

4% of the actual wear for various end-milling con-

ditions.

An ANFIS based on-line system for monitoring

boring tools was developed in [17]. This work in-

volved investigation of precision and quality control

in boring operations. Fourteen features obtained

by processing cutting force signals using virtual

instrumentation were used. A Sequential Forward

Search (SFS) algorithm was employed to select

the best combination of features. Backpropagation

neural networks (BPNs) and adaptive neuro-fuzzy

inference systems ( ANFIS) were used for on-line

classification and measurement of tool wear.

The input vectors consisted of selected features.

For the on-line classification, the outputs was boring

tool condition, which was either usable or worn

out. For the on-line measurement, the outputs was

estimated value of the tool wear. Using BPN, five

features were needed for the on-line classification

of boring tools. The features were, average longi-

tudinal force, average value of the ratio between

the tangential and radial forces, skewness of the

longitudinal force, skewness of the tangential force,
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and kurtosis of the longitudinal force.

Three features were used for the on-line classifi-

cation of boring tools by the ANFIS. The features

were, average longitudinal force and average of the

ratio between the tangential and radial forces, and

kurtosis (measure of whether the data are peaked

or flat relative to a normal distribution) of the

longitudinal force. Only one feature, kurtosis of

the longitudinal force, was used for the on-line

measurement of tool wear using ANFIS. The study

showed that, both 5×20×1 BPN and 3×5 ANFIS

could achieve a 100% success rate for the on-line

classification of boring tool conditions .

An Adaptive Neuro-Fuzzy Inference System (

ANFIS) technique for modeling and simulation of

the material removal rate in stationary ultrasonic

drilling of sillimanite ceramic was developed in

[18]. In the model, depth of penetration, time for

penetration and penetration rate were taken as in-

puts. The model combined modeling function of

fuzzy inference with the learning ability of artifi-

cial neural network; and a set of rules that had

been generated directly from experimental data.

The modeling approach developed was verified by

comparing the predicted results with experimental

results. Results showed that the values of material

removal rate predicted by the proposed model were

similar to the experimental values with 0.1% level

of significance.

A novel transductive neuro-fuzzy inference

method to control force in a high-performance

drilling process was presented in [19]. The method

was verified by analysis and verification of the

behavior of a transductive neuro-fuzzy inference

system for controlling the process which is usually

complex. The verification addressed issues such as

dynamic modeling, computational efficiency, and

viability of the real-time application of the algo-

rithm. It also included assessment of the topology

of the neuro-fuzzy system (e.g., number of clusters,

number of rules).

V. SUGGESTED APPLICATION AREAS OF ANFIS

ANFIS based control, being a relatively new

control technique that does not employ a process

model and has the potential to represent vague

data as well as the capability of self tuning, i.e.,

learning and adapting, can be widely used in control

of machining processes. Following are suggested

possible areas of application of ANFIS in control

of machining processes.

• For avoidance of thermal damage to the prod-

uct and tool in machining processes such as

grinding, milling, turning, drilling and jig bor-

ing

• In the control of cutting forces machining pro-

cesses such as milling, grinding and turning for

example, to avoid tool breakages

• In controlling the size and shape of a compo-

nents in machining processes such as turning

and milling

• In focusing a laser beam in laser machining

• Adjustment of spark gap in Electro discharge

machining

• Control of vibrations in machining processes

• Focusing of water jet in water jet machining
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• Automatic feeding and positioning of work-

pieces in automated machining processes
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