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BOOTSTRAP UNIFORM CONFIDENCE BANDS FOR A LOCAL LINEAR NONPARAMETRIC ESTIMATOR AND 
APPLICATIONS TO FINANCIAL RISK MANAGEMENT 

 
O. K. Ananda1, P. N. Mwita2  
Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Naiorbi, 
Kenya 

Abstract 
This paper considers the problem of bootstrapping a local linear estimator in conditional quantile estimation of a 
financial time series assuming independent and identically distributed errors. A nonparametric regression 
bootstrap generating process is estimated, then bootstrap confidence bands fitted to the quantile estimates. 
Under appropriate assumptions, the local linear bootstrap estimator is known to be consistent. 
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1.0 Introduction 
Consider a partitioned stationary α-mixing time series ),( 1 ttX   where the real valued response variable 

1tX  is 1tF  measurable and the variate P
t   which is Ft- measurable. For some 10   , we are 

interested in estimating the conditional  quantile of 1tX  given the filtration tF , and assuming that it is 

completely determined by t  , we can consider the model: 

1.1                              1,2,3,...         t          )()( 11   tttt XsXfX   

Here the innovations t  are assumed to be iid random variables with 0)( tE   and 1)( 2 tE  . Under these 
assumptions it holds that: 
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A similar calculation gives )/var()( 1
2 xXXxs tt   . The unknown functions and describe the conditional 

mean and the conditional volatility of the process, which we want to estimate. We have developed a 
nonparametric regression methodology that will help estimate the values of  and as shown above. 

Nadaraya (1964) and Watson (1964) discussed a kernel smoothing for the nonparametric estimator function of  
and  as in the model equation (1.1) above. Assuming finite moments of up to order 4, Franke & Wenzel (1992) 
and Kreutzberger (1993) proposed an autoregression bootstrap re-sampling scheme that approximates the laws of 
a kernel estimator for and . Franke et. al (2002) considered two estimators for the estimation of conditional 
variance and gave consistency of the residual based and Wild bootstrap procedures for  and . 
 
Although the model errors in model equation (1.1) are homoscedastic, we’ll followed similar lines as in Franke et. 
al. (2002) for bootstrapping and . We also developed uniform confidence bands to give an idea about the 
global variability of the estimate from the model equation (1.1) since it’s clear that curve of fit contains the lack of 
fit test as an immediate application. Hardle and Song (2010) used strong approximation of empirical process and 
extreme value theory to construct the uniform band over the estimator; however the poor convergence of the 
extremes of a sequence of  independent normal random variables is also investigated by Fisher and Tippet 
(1928). The slow convergence of kernel estimators as identified by Pritsker (1998) is the main reasons for the poor 
finite sample performance. In their write up, the casted doubt in the applicability of first order asymptotic theory 
of nonparametric methods in finance, since persistent serial dependence is a stylized fact for interest rates and 
many other high frequency financial data. Another fact is that a kernel estimate produces biased estimates near 
the boundaries of the data as discussed by Hardle (1990) and Fan and Gijbels (1996). Boundary bias can generate 
spurious nonlinear drift, giving misleading conclusions of the dynamics of . Recently, Hong & Li (2002) have 
developed a nonparametric test for the model using the transition density, which can capture the full dynamics 
of . It has been suggested that to avoid the boundary bias then kernel smoothing can be applied by methods 
of local polynomial Fan and Gijbels (1996) or a weighted Nadaraya Watson kernel estimator Cai (2001) 
 
2.0 The Local Linear Estimator 
The local estimation of  means estimating  separately for each  vector  
of interest. Note that  is scalar if  and  is scalar. The starting point for deriving the local linear estimator 
is the fact that, although  is not observable, it appears in a first-order Taylor expansion of  taken at  
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Where  denotes the remainder term. Inserting this expansion into the model equation (1.1) the gives 
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where the t   denotes the stochastic error term. 

The right hand side contains two known terms, the constant one multiplied by the unknown )(x  and the known 

term )( xxt   multiplied by a vector of unknown first partial derivatives 
'
)(

x
x


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  i.e. were there no remainder 

term ),( xxR t , one would have a simple OLS regression problem in which the estimated parameters correspond 

to the estimated function value )(ˆ x  at x  and the estimated vector corresponds to the estimated function value 

)(x  at x  and the estimated vector 
'
)(ˆ

x
x


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 of partial derivatives also evaluated at . However, whenever the 

conditional mean function is non-linear, the remainder term  maybe nonzero at . Using the standard 
OLS estimation would then result into biased estimates for which the size of bias depends on all remainder 
terms , . One possibility to reduce the bias is to use only those observations  that are 
in some sense close to . More generally, one down-weighs those observations that are not in a local 
neighborhood of . If more data is available, it is possible to decrease the size of the local neighborhood, where 
the estimation variance and bias can decrease, i.e. the approximation error of the model can decline with sample 
size. Thus the underlying idea of nonparametric estimation. 
 
The weighing is controlled by a so called kernel function  where the following we can assume the function is 
symmetrical, compact, non-negative univariate probability density so that . To adjust the size of 

the neighborhood one introduces a bandwidth h such that for a scalar  the kernel function becomes . 

So the larger the value of h the larger the neighborhood around , where the sample observations receive a larger 
weight and the larger may be the estimation bias. Because a larger h implies function estimates will look smoother, 
the bandwidth h is called the smoothing parameter. Since the observations in the local neighborhood of x are the 
most important, this estimation approach is called local estimation. If  and )',...,,( 21 mxxxx   is a vector, 
one uses a product kernel 
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Here the component  denotes the ith component of . Instead of using a scalar bandwidth that imposes the 
same degree of smoothing in all directions, it is also possible to use a vector bandwidth that determines the 
amount of smoothing in each direction separately. The kernel variance can be given to as 

duuKuK m
k )(22

2
2   and the kernel constant duuK 2)(  both influence the asymptotic behavior of the 

local linear estimator. 

Owing to the introduction of the kernel function, one has to solve a weighted least-squares problem 
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which delivers the local linear function estimate chx ˆ),(ˆ   at the point .  

The bandwidth  is also included as an argument to indicate the dependence method for bandwidth choice, which 
is based on statistical procedures. A well grounded bandwidth is also necessary for valid asymptotic properties of 
these estimators. 
 
3.0 Asymptotic Properties of the Local Linear Estimator 
Let  denote the density of the lag vector at the point  and  - the trace of matrix . The asymptotic 
normal distribution of local linear estimator is given by: 

  1.9                                         ))(,0()()(),(ˆ 2 xvNhxbxhxTh dm  
 

Where the asymptotic bias  and asymptotic variance  which can be given as: 
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This then becomes clear that, for the asymptotic normal distribution to exist, one has to require that 

mTh  and  Th  as 0 . Otherwise, the asymptotic distribution would collapse to a point 
or the bias would grow infinitely large.  Inspecting the asymptotic bias term (1.9) more closely reveals that the 
second order partial derivatives of )(x  have to exist. In fact for (2.1) to hold this has to be the case in a 

neighborhood of x  hence one has to assume (.)  is twice continuously differentiable on the support of )(xf . 

Because both the density )(xf  and the conditional variance )(2 x   enter the asymptotic variance (2.1), one 

also has to assume that both are continuous and the latter is positive on the support of )(xf . Initially the 

asymptotic distribution (1.9) was derived under the assumption that  tt xy ,  is a sample of i.i.d observations. 

Then tx  does not contain lags of ty  and there is no stochastic dependence between observations at different 

times. In the current situation, where tx  is a vector of lagged syt ' , a stochastic dependence clearly exists. Hadle 
& Yang (1998) showed that the asymptotic behavior of the local linear estimator (1.8) is the same as that 
encountered in the case of i.i.d variables if the stochastic dependence is sufficiently weak. At this point, it is 
sufficient to state that a stationary ),( qpARMA process satisfies the required conditions if its driving error 
process is not completely ill-behaved. For empirical work, it is most important to transform a given time series to 
be stationary. Thus prior to local linear estimation, one has to remove unit roots. 

Some consequences of the implications of the asymptotic normal distribution can be given as: 
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This nicely shows the asymptotic bias-variance trade-off. If h gets larger, the bias increases but the variance 
diminishes and vice versa. This asymptotic trade off will be used to obtain an asymptotically optimal bandwidth. By 

inspecting the formulae below that its rate of decline is )4(
1



mT , thus if we denote a positive constant by  , any 

bandwidth for which )4(
1




 mTh  , hold has the optimal rate to guarantee a balanced decline of bias and 

variance. Inserting, )4(
1




 mTh   into (1.9) delivers the rate of convergence of the local linear estimator with 
respect to the number of observations T that is: 
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It becomes apparent that the rate of convergence of the local linear estimator depends on the number m of lags 
and becomes quite slow if there are many lags, often called the curse of dimensionality of nonparametric 
estimators. Note that the rate of convergence is slower than for parametric estimators even if 1m . This is the 
price one pays in nonparametric estimation for allowing the model complexity to increase with number of 
observations and thus to let the bias reduce with sample size. Such an increase in model complexity is in general 

not possible if one wants to obtain the parametric T  rate. 

By inspection, (2.0) one can see that the estimation bias also depends on the second partial derivative of the 
conditional mean function as well as on the kernel variance 2

K . The asymptotic variance (2.1) increases with 

conditional variance )(2 x  and decreases with the density )(xf . The intuition for the latter is that the larger 
the density, the more observations are on average close to the point x and thus available for local estimation, 
which in turn reduces the estimation variance. 
 
4.0 Bandwidth and Lag Selection 
The method for nonparametric bandwidth and lag selection described here is based on Tscherning & Yang (2000). 
For a lag selection it is necessary to specify a set of possible lag vectors a priori by choosing the maximal lag M. 

Denote the full lag vector containing all the lags up to M by  '21, ,...,, MtttMt xxxy  . The lag selection task is 

now to eliminate from the full lag vector  all lags that are redundant. This depends on choosing a relevant 

optimality criterion. A widely used criterion is the mean integrated squared error of prediction commonly known 
as final prediction error (FPE). We state it by using a weight function (.)w  needed for obtaining consistency of the 

lag selection procedure. One has to choose a weight function (.)w  that is continuous and non negative and for 

which 0)( Mxf  for  Mx  in the support of (.)w . The simplest example is the indicator function. 
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And )(hb  and )(hc  depend on the bandwidth and kernel constants. 

The integrated variance of estimation and the integrant squared bias of estimation go to 0 for increasing sample 

size if 0h  and  TThm  as   holds. 
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5.0 Bandwidth Estimation 
For minimizing the AFPE with respect to h, i.e. by solving the variance bias tradeoff between ChcBhb )( and  )( , 
one obtains the asymptotically optimal bandwidth: 
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In order for the optimal bandwidth to be finite, one has to assume that C defined is positive and finite. This 
requirement implies that, in the case of local linear estimation, an asymptotically optimal bandwidth  for 

linear processes that is finite doesn’t exist. This is because a first order approximation bias doe not exist, and thus 
a larger bandwidth has no cost i.e. clearly one should take a bandwidth as large as possible. It should be noted that 

 is asymptotically optimal on the range where the weight function (.)w  is positive. For this reason it is also 

called the global asymptotically optimal bandwidth. Starting from the mean squared error of prediction: 
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which is computed at a given x, one would obtain a local asymptotically optimal bandwidth, which, by construction 
may vary with x If opth  is estimated by consistent estimators for the unknown constants B and C, the resulting 

bandwidth estimate is known as plug-in bandwidth optĥ . One way to estimate the expected value B consistently is 

given by averaging the weighted squared errors from the local linear estimates: 
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Where, (.)f̂  is the Gaussian kernel estimator of the density )(yf .  

Estimating Bh , one has to use Silverman’s rule of thumb bandwidth Silverman (1986) 
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An estimator of  is give by  
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Where (.)ˆ )( jj  denotes the second order direct derivative of the function (.)  with respect to tix . For 
estimating higher order derivatives, one can use local polynomial estimation of appropriate order. In estimating 
second order direct derivatives it is sufficient to use the direct local quadratic estimator: 

 
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cross term does not affect the convergence rate while keeping the increase in the parameters 
m1,..,j    ,,, 210 jj ccc  linear in the number of lags m. This approach is a partial cubic estimator proposed by 

Yang & Tschernig (1999), who also showed that the rule-of-thumb bandwidth: 
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6.0 Results and Discussions 
Clearly the returns of the financial time series process can be seen to be normally distributed as shown in the 
Figure 1 below. 

For such a process, then fitting a polynomial by a plug –in approach, the function that appears in the diagram gives 
an asymptotically optimal bandwidth best approximated with a local linear polynomial. 
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Figure 1: Returns of a financial time series 

Fitting our returns data with a linear model with 2 coefficients (AR [1] process) for 250 training points produced 
the coefficients 0.9817942 that represented the y intercept and a gradient of 0.9727030. Hence the hypothesized 
model could be represented as xy 9727030.09817942.0  where x represents the returns and y as the 
actual financial time series. The estimates for the standard errors for the coefficient above respectively gave 
0.06867458 and 0.06262530 as the best variance bounds. 
 
Again, fitting our returns data with a nonparametric regression local linear estimator to 250 training points to 2 
variable(s) for 2 nonparametric regressor(s) using optimal bandwidth as given below. 



 363

Table 1: A table of optimal bandwidth and coefficients of a local linear polynomial on 250 points 
 

                               y  

Bandwidth(s): 0.1896613    0.3412962 

 

                                  x  

Bandwidth(s): 0.001552832                0.7407379 

                          0.999803300                0.2324291 

 

 

                               f                      s 

Coefficient(s):  0.9476291      0.958792 

 

Residual standard error: 0.977513 

R-squared: 0.7270775 

 

 

Using the estimators fitted in the previous discussion, then the diagrams as shown below illustrate the power of 
local linear compared to the linear ordinary regression in trying to uncover the data generating mechanism for the 
returns data. As we can see, the vector of the bandwidth enables us to smooth the local linear estimator in all 
directions not necessarily equal but essentially uniformly at various values of the function. The final prediction 
error can be seen to be equals to 0.977513 and a coefficient of multiple determination of 0.7270775 that implies 
73% of the returns are taken care of by the local linear estimator as the optimal lag vector. The remaining 27% lags 
can be described to be redundant. The coefficients in the local linear estimator are 0.9476291 and 0.958792 
respectively which compared to an OLS as given above are slightly smaller 
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Figure 2: The plots of the OLS fitted and local linear polynomial 

To plot regression surfaces with variability bounds constructed from bootstrapped standard errors, then the 
diagram below shows the uniform bands. 
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Figure 3: Bootstrapped estimators for both OLS and the local linear 

7.0 Conclusions 
In this paper we have shown that the local linear estimator out-performs the ordinary linear regression in 
mimicking the financial time series data generating mechanism. With an optimal bandwidth and lags, we are able 
to demonstrate that we can estimate the values of the quantile estimates for conditional mean and variance that 
are used to put a bound on the risk levels applied in financial risk management. 

Also we have demonstrated the bootstrap confidence for both estimators in both the ordered and the unordered 
sets will give a uniform bound on the expected extends of the values of the estimates 
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