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Abstract 
In this study, control method to control Buck converters by Linear Quadratic Regulator (LQR) controllers is 
employed. Systems with conventional LQR controllers present good stability properties and are optimal with 
respect to a certain performance index. However, LQR control does not assure robust stability when the system is 
highly uncertain. In this paper, a convex model of converter dynamics is obtained taking into account uncertainty 
of parameters. In order to apply the LQR control in the uncertain converter case, the performance index is 
optimized by using Mesh Adaptive Search (MADS). As a consequence, a new robust control method for dc–dc 
converters is derived. This LQR-MADS control is compared with normal LQR design. All the analysis and simulations 
on the above converter is by MATLAB software. The simulation results show the improvement in voltage output 
response. 
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1.0  Introduction 
The DC converter is a device which transforms AC power to DC. This device is also known as an AC to DC converter. 
A Chopper can be considered as a DC equivalent of an AC transformer with a continuously convertible constant. 
Like a transformer, the converter can be employed for stepwise increase or reduction of DC source voltage. The 
converters are wildly used for the control of motor voltage in electric cars, ceiling elevators, mine excavation etc. 
Their specific features are the precise control of acceleration with high efficiency and fast dynamic response. 
Converters are also employed in DC motors to return the energy to its source. In this way, it results in the saving of 
energy in the transportation systems in prolonged stoppage. Converters are also used in DC voltage regulators 
along with an inductor to produce a DC current source especially for the current source inverters. 
 
Some control methods have stated the issue of control through pole placement as with Kelly and Rinne, (2005). 
Another method is the use of state feedback in the control of DC-DC converters as stated by Keller, et al 2005). In 
modeling area of DC-DC converters, a variety of models are presented which comprise desirable responses by 
administration of control methods. Most of the articles have concentrated on design of PI and PID controllers  as in 
Uran and Milanovic, (2003) and Namnabat, et al., (2007)]. The feedback loop is another control method used by He 
and Luo, (2004). The use of LQR method for the improvement of Buck converter function is the subject presented 
by Leung, et al., (1993), Bayati et al., (2007) and Mohammad. (2007)]. Linear state feedback controls are among 
the simplest way of feedback control scheme especially for system with multi outputs. When the model is 
obtained in state space, then the state feedback control can be designed based on it. Commonly, the state 
feedback control gains can be determined by means of linear quadratic regulator (LQR) method via solution of 
Riccati equation or pole placement method as indicated by Ogata, (2002). However, these approaches still possess 
trial and error approach of parameter adjustment. Particularly, choosing elements of Q and R matrices in the 
feedback control design using LQR method has to be done by trial. 
 
In this paper an optimum LQR is designed that can improve the Buck converter response. There is no specific 
method in LQR design which is based on trial and error. The best constant values for state feedback matrix are 
laboriously obtained through trial and error, although time consuming. Genetic algorithm is employed to find the 
best values for LQR controller in a very short time. Therefore, a new method is presented for optimizing the 
systems with two factors of the least response time and the highest precision. 
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2.0 Materials and Methods 
2.1  Buck Converter Circuit Model 
The Buck converter circuit model is depicted in Figure1. 

 
 
Figure.1: Buck converter 
 
In this model, Vo is the system output voltage and Vref , is the converter voltage. To obtain the converter state 
equations in low-frequency state, it is required that the system state be studied in two states of on and off as 
shown in Fig. 2, and Fig.3 
 
2.1  Switch ON: 

 
 
Figure.2: Circuit topology during Ton.               Figure.3: Circuit topology during Toff 
                           
 Vdc - V0 = (Rs + RL )iL + L(diL / dt) , 
iL = C(dV0 / dt) + V0 / R ,                 ………………………………………………………………………..……………………………………………….. (1)                               

 
X= AlX + BlVdc ' 
 
2.2  Switch OFF:   
 (Rd +RL)iL +L(diL/dt)+Vo =0 , 
  iL =C(dVo/dt)+Vo/R , 
  X=A2X + B2Vdc  …………………………………………………………………………………….……………………………………………………………… (2)          

 
Now it is required to show the effect of on and off durations of switch in (1) and (2) to obtain the mean values of 
state equations. 
X = AX + BVdc  
A = mAl + (l - m)A2  
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B = mBI + (l - m)B2………………………………………………………………………………………….……..……………………………………………. (3)                                                          

     
2.2  Linear Quadratic Regulator (LQR) Designing Methodology 
The LQR design problem has been extensively investigated for the past four decades. It is possible to improve the 
converter response by employing the LQR control method. Application of the LQR involves choosing the positive 
definite state and control input matrices, Q and R that provide satisfactory closed-loop performance. The closed-
loop eigenvalues are related to these weighting matrices. Many methods are available for determining weighting 
matrices, with the closed loop poles placed in a specified region of the complex plane. A sequential procedure 
which selects the weighting matrix Q and degree of relative stability to position individually and arbitrarily the real 
parts of the eigenvalues of the optimal LQR system has been presented by Qi. Feng, et al (2002). Many methods 
are available for determining weighting matrices, with the closed-loop poles placed in a specified region of the 
complex plane. R. L. Haupt and S. E. Haupt,(2004) used sequential method with classical root-locus techniques has 
been developed for determining the weighting matrices in the frequency domain to retain closed-loop eigenvalues 
in a desired region in the complex plane. But the main method is based on trial and error, although time 
consuming. In this method, the feedback gain matrix is determined if J energy function is optimized. To achieve 
equilibrium among range control parameters, response speed, settling time, and proper overshoot rate, all of 
which guarantee the system stability, the LQR is employed. 
 
2.2.1  LQR Algorithm 
For a system in the form of  
X=AX+BU ………………………………………………………………………………………………………………………………....………………………….(4)       
 
The LQR Method determines the K matrix of the equation 
U(t)=-KX(t)………………………………………………………………………………………………………….…………………………………….……………(5)      
to minimize  
 J = ∫ (XTQX +U TRU) dt ……………………………………………………………………………………..…………………………………...………………(6) 
 
Function .R and Q matrices express the relation between error and energy expense rate. R and Q are also the 
definite positive matrices. From the above equation, we have: 
J= ∫(XTQX+XTKTRKX)dt ………………………………………………………………………………………………………………….……………………… (7) 
=∫(XT(Q+KTRK)X)dt 
Subsequent to the solution stages of the equation and optimization of the parameters of the following equation: 
  XT(Q + KTRK)X =d/dt(XTPX) 
 
The following equation is presented: 
XT(Q+ KTRK)X=-XTPX -XTPX  
  =XT[(A _BK)T P +P(A -BK)]X  ……………………………………………………………………………………………………..………………………. (8) 
With regard to the values on the both sides of the above equation and with regard to this fact that these equations 
are true for every X, then the following equation is obtained: 
(A - BK)TP+ P (A - BK) = -(Q+ K TRK)……………………………………………..…………………………………………………..…………………….(9) 
If R= TT.T matrix is positive and definite and T matrix is also gross: 
ATP+PA+ [(TK-TT)-1BTP]T*[TK-(TT)-1BTP]-PBR-1BTP+Q=0………………………………………….……………………..…………………….. (10) 
 
For quantifying J in relation to K we have: 
XT[TK - T-T BTP]T TK - T-T BTP]X …………………………………………………………………….…………………………………….………………….(11) 
This equation is non-negative and the minimum amount takes place when it is zero or when: 
TK=T-1TBTP  
So; 
K = T-1T-T BTP= R-1BT P   ………………………………………………………………………………….………………………………….………………….(12) 
We can also obtain the control matrix for U input. 
U(t) = -KX(t) = -R-1BTPX(t)………………………………………………………………………………………………..……………………………………(13) 
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And P should be true in the following Riccati equation. 
ATP+PA-PBR-1BTp+Q=O ……………………………………………………………………….………….………………………………………………….. (14) 
In LQR design, Rand Q weight matrix which determines the quotient related to the closed loop feedback system 
within the least time is determined. The selection of R and Q has the least dependence on the specification of 
system administration and requires a long range of trial and error. 
 
2.3 Mesh Adaptive Search Algorithm (MADS) 
Mesh Adaptive Search Algorithm (MADS) optimization routine is an evolutionary technique that is suitable to solve 
a variety of optimization problems that lie outside the scope of the standard optimization methods. Generally, 
MADS has the advantage of being very simple in concept, and easy to implement and computationally efficient 
algorithm. Unlike other heuristic algorithms, such as GA, MADS possesses a flexible and well-balanced operator to 
enhance and adapt the global and fine tune local search. A historic discussion of direct search methods for 
unconstrained optimization is presented by R. M. Lewis, V. Torczon, and M. W. Trosset(2000). The authors gave a 
modern prospective on the classical family of derivative-free algorithms, focusing on the development of direct 
search methods. The algorithm proceeds by computing a sequence of points that may or may not approaches to 
the optimal point. The algorithm starts by establishing a set of points called mesh, around the given point. This 
current point could be the initial starting point supplied by the user or it could be computed from the previous step 
of the algorithm. The mesh is formed by adding the current point to a scalar multiple of a set of vectors called a 
pattern. If a point in the mesh is found to improve the objective function at the current point, the new point 
becomes the current point at the next iteration. This maybe better explained by the following: 
First: The Pattern search begins at the initial point 0 X that is given as a starting point by the user. At the first 
iteration, with a scalar =1 called mesh size, the pattern vectors are constructed as [0 1], [1 0], [−1 0] and [0 −1], 
they may be called direction vectors. Then the Pattern search algorithm adds the direction vectors to the initial 
point X0 to compute the following mesh points:X0 + [1 0],X0 + [0 1],X0 +[ −1 0] and X0 + [0 −1].   
 Figure.4 illustrates the formation of the mesh and pattern vectors. The algorithm computes the objective function 
at the mesh points in the order shown. 
 

    
Figure 4: Mesh points and the Pattern illustration 
 
The algorithm polls the mesh points by computing their objective function values until it finds one whose value is 
smaller than the objective function value of X0. If there is such point, then the poll is successful and the algorithm 
sets this point equal to X1.After a successful poll, the algorithm steps to iteration 2 and multiplies the current mesh 
size by 2, (this is called the expansion factor and has a default value of 2). The mesh at iteration 2 contains the 
following points: 2*[1 0] + X1, 2*[0 1] + X1, 2*[-1 0] + X1 and 2*[0 -1] + X1. The algorithm polls the mesh points until 
it finds one whose value is smaller the objective function value of X1. The first such point it finds is called X2, and 
the poll is successful. Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a 
mesh size of 4 at the third iteration because the expansion factor =2.  
Second: Now if iteration 3, (mesh size= 4), ends up being unsuccessful poll, i.e. none of the mesh points has a 
smaller objective function value than the value at X2 , so the poll is called an unsuccessful poll. In this case, the 
algorithm does not change the current point at the next iteration. That is, X3 = X2. At the next iteration, the 
algorithm multiplies the current mesh size by 0.5, a contraction factor, so that the mesh size at the next iteration is 
smaller. The algorithm then polls with a smaller mesh size, this is shown by The Math works (2010),A.K.Al-Othman, 
et al,(2008) and R. M. Lewis, and V. Torczon ( 2007)].The optimization algorithm will repeat the illustrated steps 
until it finds the optimal solution for the minimization of the objective function.  
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2.3.1 Tuning R and Q using MADS 
It is not a trivial problem to find the optimal K since the control performance depends on choosing weighting 
matrices. In this paper, weighting matrices are decided by the genetic search to obtain the best K for the optimal 
LQR design. 
The target function is as follows: 
          Fobj = {tr0.2 + ts0.5 + Ess5 + Mp2}……………………………………………………………………………………………………………………(15) 
That tr is rise time, ts is settling time, Mp is overshoot and Ess is steady state error. 
 
3.0 Results and Discussions 
 

   
 
Figure .5: Open loop output voltage response     
 

 
Figure.6:simple LQR output voltage responses 
                                                                                  

  
 
Figure.6: LQR-MADS output voltage response 
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Table 1: LQR Parameters 
 

 
Table 2: Simulation results 
 

  
 
4.0  Conclusion 
The reduction of output voltage ripple of the converter is very important. The optimum design method for linear 
controller is able to control the dynamic behavior of the converter. The using of mesh adaptive algorithm for the 
calculation of optimum coefficients of the matrices in the design of LQR controllers can bring about optimum 
dynamic response. In this paper, a LQR controller is designed to improve the Buck converter performance, in this 
way, mesh adaptive algorithm is used to optimize the LQR matrices. The results of simulation prove the 
improvement of the functioning of this converter compared with simple LQR method as there is a significant 
reduction in rise time and settling time which indicate that the system is quite fast. 
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