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Abstract 
Modeling can enable system-level understanding of biosystems. However, biological systems exhibit a number 
of complex properties and characteristics which are not amenable to standard scientific and engineering 
approaches towards study, understanding and manipulation of systems. This paper presents various 
approaches and techniques which can be used in modeling biosystems. Through a systematic review of 
literature it was found that there are a number of novel approaches and techniques that can be utilized in 
modeling biosystems.  
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I.0 Introduction 
A biosystem is made up of dynamic and complex set of interdependent or temporally interacting elements 
structured as a functional unit. Parts of a biosystem are in most cases themselves systems composed of other 
parts. Energy, material and information flow among the different elements of a biosystem as well as from and 
to the surrounding of the system via semi-permeable membranes or boundaries. Though equilibrium seeking, 
elements of a biosystem can exhibit oscillating, chaotic, or exponential behavior. Modelling can enable 
system-level understanding of biological systems. However, biological systems exhibit a number of complex 
properties and characteristics which present a challenge to the study and manipulation of biological systems. 
Standard scientific approaches towards study, understanding and manipulation of biosystems are bottom up 
and often involve formulation and solving of many complex equations. In addition, the data involved is often 
very noisy and limited. It is very tricky to estimate a vast number of equation parameters based on such data. 
Furthermore, it is difficult to identify the really functions of systems when using so many equations together. 
Engineering approaches can provide a solution to this bottleneck. However, traditional engineering 
approaches are reductionist in nature; often involve "brute force" (mechanistic) methodologies; are 
application-based; often focus on the objective at hand and often assume time-invariant, linear as well as 
predictable system dynamics. Thus, there is need for appropriate approaches and techniques for modeling 
biosystems. The aim of this paper is to present various approaches and technologies which can be utilized in 
modeling biosystems. The study was conducted by a systematic review of literature. It was found that 
biosystems can be described using white models (where adequate information is available); black models 
(where scant or no information is available) or grey models (where only part of the system information is 
available). 
 
1.1 Properties of Biosystems 
Biological systems are complex composites which display a number of properties:  
(i). Multifunctional and Self-healing: Biological systems accumulate functions e.g. bones support the body 

and manufacture red blood cells. Leaves of plant leaves synthesize food (photosynthesis) and carry out 
gaseous exchange. Most bio-systems can self-repair themselves. In plants injured bark self-heals almost 
perfectly to its initial state. In humans many organs and systems do self-heal almost completely 
(exceptions are teeth and brains which do not self-repair:- but one part of the brain can take the lost 
functions). 

(ii). Hierarchical Organization Structure: Hierarchical organization based on building blocks is inherent in 
the design of bio-systems. For instance cells are the building blocks of tissues; tissues the building blocks 
of organs; organs the building blocks of systems and systems building blocks of organisms. The 
organisms form the building blocks of populations, populations the building blocks of ecosystems and 
lastly ecosystems constitute the building blocks of the biosphere. 

(iii). Self-Organization and Self-Assembly: Biosystems are self-organizing and self-assembling. For instance, 
essential amino acids organize and assemble themselves to form proteins. Simple sugars self-organize 
themselves into complex carbohydrates.  Cells assemble and organize themselves into tissues. Many 
tissues come together to form functional organs and so on. However most modelling procedures assume 
predetermined behaviour of systems. 
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(iv). System non-linearities: Most biosystems are moderately or highly non-linear in their dynamics. For 
example, figure 1 shows the biological activity in compost versus temperature (Hall, 1998). At low 
temperature, there is low activity. As the temperature rises, the activity increases non-linearly. At higher 
temperatures (above about 70° C in this case), activity drops dramatically as proteins become denatured 
and cellular activity shuts down. This figure depicts typical behavior for microbial systems. However, most 
fields of system dynamics and control have been developed assuming linear or pseudo-linear models to 
describe and predict system behavior. 

(v). Temporal and Spatial Heterogeneity: Many biosystems change dramatically in time and space. Most 
biosystems exhibit rhythmic behavior characterized by rising and falling populations, rising and falling 
rates of internal temperature, hormone level and many other activities. At organism level, sleep and 
reproductive cycles are good examples biorhythms. On the other hand birth, growth, senescence, and 
death are cyclical at the population level. Biosystems also vary in their properties and activity from one 
location to another. For instance, within a cell there are organelles that have very different functions 
and properties. Larger organisms have organs that are very different from each other, while 
communities or ecosystems include different organisms, each of which plays different roles. 

(vi). Emergent Properties: Biological phenomena and interactions result in new or "emergent" system 
properties and dynamics as smaller/simpler components interact to form more complex systems. For 
instance, at the sub-cellular level, proteins are described by their amino acids sequence. However, as 
these proteins take on three-dimensional characteristics that further define their properties as they bend 
and twist. In the cell, organelles interact to perform various functions that collectively define properties at 
the cellular level. At the organism level, interactions among cells may give rise to other emergent 
properties, resulting in phenomena commonly described at the organ or systemic levels. Thus, to predict 
(via a scientific approach) or control (via an engineering approach) the behaviour of biosystems, some 
knowledge of their system properties and characteristics is necessary. 
 

 
Figure 1: Biological activity in a composting system (source: Hall, 1998) 
 
1.3 Importance of Modelling Biosystems 
Of recent times, there has been an increased interest in model-based understanding of biosystems. This has 
been largely driven by the need for a system level understanding of biological systems. A system level 
understanding of biosystems is motivated by: 

(i). Increasingly large amounts of biological data: Due to detailed studies and recent high throughput 
technologies, biology has been able to accumulate large amounts of data for important biosystems like 
humans and other organisms. 

(ii). Little understanding of biosystem function and design: Though there are vast amounts of data on 
biosystems, there is no systematic way of bringing together all the known knowledge in order to 
comprehensively understand the functions it serves. Furthermore, there is no systematic way to predict 
what the system does or modify the system to do something else (engineer the system). This is brought 
about by the fact that: 1) biological systems are very complex 2) they have different organisational levels 
(i.e. molecular-cellular-tisuelar-organ-organism-population-ecosystem biospehere). But there is no good 
way of bringing this hierarchy together. 
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(iii). Tremendous potential impact for systems approach: Being able to understand and manipulate 
biosystems will bring tremendous positive impacts. It will enable: 

i. Gaining insights into fundamental biological processes such cell cycles, biorhythms, disease and aging 
process 

ii. Breakthroughs in human health care through improved diagnosis and drug design; new therapies (e.g. 
gene therapy); personalized Medicare and development of biologically based consumer products and 
pharmaceuticals 

iii. Engineering of biosystems such as advanced biosensors, bio-generated energy (like bioenergy) and bio-
factories (producing things like drugs, edible vaccines, bio-materials etc) 

iv. Advancement of the science of biomimetics (bio-inspired computing, engineering and technology) and 
biomaterials (e.g. bio-steel) 

v. Development of control systems and structures for biological systems (Li et al., 2010; Tyson et al., 2003) 
 

1.4 Types of Models  
Depending on the knowledge of physical laws employed and the amount of data available models for 
describing biosystems can be white-box, grey-box or black-box models. 

(i). White box models: The White Box models represent cases when it is possible to construct a model 
from prior knowledge and physical insight, in other words, the models are perfectly known. First 
principles information is used to derive the full models whose complexity can be reduced using 
system identification or other techniques.  

(ii). Grey box models: The Grey Box models represent cases when some physical insight is available but 
several parameters remain to be determined from observed data. Certain structured information 
about the model (system) is already available however there are a number of unknown free 
parameters which need to be estimated.  

(iii). Black box models: The black box models represent cases in which no physical knowledge is available 
or used but the chosen model structure belongs to families that are known to have good flexibility 
and have been "successful in the past". Since no prior model is available all parameters must be 
determined using different techniques like system identification, inverse modeling and universal 
approximation among others. 

 
1.5 Modeling Techniques  
There are different techniques in which modeling can be done. These include but not are limited to 
system identification, artificial neural networks as well as morphology based techniques. These 
techniques present traditional as well as novel tools which can be used for modeling biosystems. 

 
(a)  System Identification Techniques  
System identification is comprised of mathematical tools and algorithms that build dynamical models from 
measured data. This is mostly done in time domain though it can also is done in frequency domain. 
Depending on the knowledge of physical laws employed in their development, system identification models 
can be termed as white-box, grey-box or black-box models. For white box models, system identification is 
used to reduce the order or complexity of full models derived by first principles information. For grey box 
models, certain structured information about the model (system) is already available. However, such 
models still have a number of unknown free parameters which can be estimated by system identification. 
Since no prior model is available in black box models, all parameters need to be determined. The general 
procedure involved in system identification model building involves: generating data set D; selecting a (set 
of) model structure and selecting the criteria (least squares for instance) used to specify the optimal 
parameter estimates and validate the model. The main elements of system identification include:  

 
(i). Statistical view of induction and inference because all work is relative to the finite samples and noisy 

data set.  
(ii).  Optimization- continuous parameter estimation and discrete model selection  

(iii). Dynamics (control/state space):- representation of ODE/differential equations  

 
 
 
Most system identification algorithms are used to develop black box models. According to Salat (2003), 
mathematical models resulting from system identification are used for the purpose of controlling, simulation 
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tests and forecasting. Sjoberg et aI., (1995) pointed out that a key problem in system identification is to find a 
suitable model structure, within which a good model is to be found. System identification models can be 
termed as white-box, grey-box or black-box models, depending on the knowledge of physical laws employed.  

 
(b) Shape/Morphology/Geometry Techniques  
This technique is born of the need to consider the spatial aspects of biological systems such as position, 
interaction and physical shape. This is because physical shape aspects of biosystems cannot be ignored in the 
study and understanding of these complex entities.  However, biosystems can exhibit features hard to 
capture with classical quantitative observables (Merelli and Rasseti, 2012). In addition, interactions and 
collective functions can be driven by not only quantitative features (e.g. space and geometry) but also by 
higher-level, more abstract qualitative relations. By definition, a shape based system is a tuple (S,B) where B 
is the behavior of the system, a set of process terms, given by the syntax:  
 

𝑷 ∷=
𝑷 + 𝑷

𝑪𝒉𝒐𝒊𝒄𝒆
     

𝑷𝑰𝑰𝑷
𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍

𝑪𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
    

𝒂. 𝑷
𝒂𝒄𝒕𝒊𝒐𝒏 𝒑𝒓𝒆𝒇𝒆𝒙

𝒂𝝐𝑨
    

𝟎
𝒊𝒏𝒂𝒄𝒕𝒊𝒐𝒏

       (1) 

And S is the structure of the system, i.e the shape of the interaction space defined by a topological space (A,T) 
on the set of actions A. A number of models can be developed by using this technique including deferential 
equations based models, compartmental and lattice based models (Cacciagrano et.al., 2010) aa well as shape 
calculus based models (Bartocci et. al., 2010; Paoletti et. Al., 2012).  
(c) Inverse Modelling Techniques  
In principle if a real - valued vector X describes the condition of a phenomenon and because of this condition 
X, a result Y is produced, a model, m by which Y can be predicted from an appropriate X can be defined such 
that:  
 Y= (m)X                (2) 
A representative set of inputs of X's can be collected and the model applied for each. However, if for some 
reason determination of X is not feasible or difficult, while Y can be easily determined, a representative set of 
Y's can be collected and the model applied inversely such that for every Y (input) a corresponding X is obtained 
as output (Timothy, 1993). Though explicit inversion of complex models is not possible, neural networks (NN) 
can solve this problem. Each Y in Eqn (2) is applied to a NN's inputs and the network is trained to produce the 
corresponding X at its output. Alternatively, if (m) incorporates some coefficients, they can be optimized by 
any optimization techniques. Inverse modeling is used to develop black box models. These technique 
represents a novel tool for modeling most biosystems. 
 
(d) Mathematical Techniques 

Mathematical modeling is used to develop white box models. This is when there is adequate information and 
evidence that there exists an identifiable mathematical relationship that describes the behavior of a 
biosystem. The technique is used to develop simple Linear and Nonlinear models as well as stochastic models. 
It is also employed in developing representation of fundamental processes and carrying out numerical solution 
procedures, analysis as well as validation.  

 
(e) Piecewise Functions Techniques 
Coupling of multiple models becomes necessary when modelling complex systems (Duff, 2012). A piecewise 
function is a function which is defined by multiple sub functions. Each sub function applies to a certain interval 
of the main function's domain (a sub-domain). Piecewise is a way of expressing the function, rather than a 
characteristic of the function itself. However, when additional qualification is given, piecewise can describe the 
nature of the function. For example, a piecewise polynomial function is a function that is a polynomial on each 
of its sub-domains, but possibly a different one on each. Piecewise functions are defined using the common 
functional notation, where the body of the function is an array of functions and associated sub domains. For 
example equqtions 3 and 5 denotes the notation for piecewise functions graphically shown in figure 2. 

                (3) 
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                    (4)    
A piecewise function is said to be continuous on a given interval if: i) it is defined throughout that interval; ii) 
its constituent functions are continuous on that interval, and iii) there is no discontinuity at each endpoint of 
the sub domains within that interval. Figure 2b define a piecewise function that is piecewise continuous 
throughout its sub domains, but is not continuous on the entire domain as shown by a jump at xo 

    
(a)                                                                          (b) 

Figure 2: Graphical representation of piecewise functions (a solid dot means "including", an open dot means 
"not including"): a) quadratic linear function b) different linear functions on either side of xo.  

 

(f) Universal Approximation Technique  
This technique is based on the universal approximation theorem: Let φ( ) be a nonconstant, bounded, and 
monotonically-increasing continuous function. Let Xm denote the m-dimensional unit hypercube [0,1]m. The 
space of continuous functions on Xm is denoted by C(Xm). Then, given any function 𝑓 ∈ 𝐶(𝑋𝑚) and ε>0, there 
exist an integer N and real constants ai, bi ε R and wi ε Rm where i = 1, N such that we may define:  
 

𝑭(𝒙) =  ∑ 𝜶𝑰𝝋𝑵
𝒊=𝟏 (𝒘𝒊

𝑻 + 𝒃𝒊)                       (5) 
as an approximate realization of the function f where f is independent of φ; that is,  
 
   |𝑭(𝒙) − 𝒇(𝒙)| < ∈      For all x ε Xm.                    (6) 
In other words, functions of the form F(x) are dense in ε(Xm)   

Universal approximation models are usually NN models. Fussy logic models are also possible. Neural networks 
can represent a wide variety of interesting functions when given appropriate parameters; it does not touch 
upon the algorithmic learnability of those parameters.  
 
Vii Building block techniques 
This modelling technique considers cells as building blocks of Biosystems (cells-tissues-organs-systems-
organisms- populations-ecosystems). For instance the bio-physiological functions for cells can be modelled as 
equations 5 and 6. 

                         (7)   

             (8) 
Where: M = metabolic; ST = Signal transduction; PS = Protein synthesis; CR = cell reproduction; CG = cell 
growth; CM = cell movement; MT = molecular transport and N = number of cells.  
 
(g) Mass and Energy Balance Techniques 
Mass balance techniques are based on the law of conservation of mass (matter cannot disappear or be created 
spontaneously). The law of conservation of energy (energy cannot be created nor destroyed) forms the basis 
for energy balance techniques. Techniques based on mass and energy balance also utilize chemical balance as 
well as equilibrium and metabolic kinematics. These techniques can be used to create white and grey box 
biosystem models.  

[ ]
d d

C M ST PS CR CG CM MT
dt dt

      

( ) ,  0
1 1 1 1

QN M Pd d d
p t p C C

i j k ldt dt dt
      
   
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1.6  Approaches to Biosystems Modelling 
Different approaches can be used to conceptualize biological systems (cells, tissues, systems, organs, 
organisms, populations and ecosystems) so as to make it possible to model them. Reductionist approaches 
break down biological systems into simple manageable units. These are the traditional engineering approaches 
and often involve "brute force"; are application-based and focus on the objective at hand. They often assume 
time-invariant, linear, and predictable system dynamics. Holistic (system) approaches consider the biological 
system as a whole. The holistic approach to biosystems modelling is very interdisciplinary and involves biology, 
biophysics, biological engineering, Synthetic biology, genomics, natural selection, traditional engineering 
(devices, control, learning, communication) and mathematics among other disciplines.  
 
However, biological systems are complex, dynamic and the data involved is very noisy and limited that 
modelling them as a whole is very tricky. Hybrid approaches combine both, Reductionist and holistic 
approaches in various proportions (depending on available data) to model biosystems. Thus they can be 
considered to be novel. The following is a brief description of these three approaches to biosystems modelling. 
 
1.6.1 Reductionist Approaches  
This is the traditional engineering approach which concentrates on the problem at hand i.e. “let the method 
decide”.  It does not adequately address all aspects of a biosystem and how it is related to other systems. This 
approach heavily depends on analogies that can be grasped or assumed to exist between a given physical 
system and the biosystem under consideration. Where no clear analogy with a known existing physical system 
methodology can be established, the biosystem is forced to fit into one via assumptions. Though, 
computationally convenient, the reductionist approach is not suitable for biosystems. Mechanistic (physical) 
modelling is the commonest form the reductionist approach. 
 
1.6.2 Mechanistic (physical) Modelling Approach  
Mechanistic (physical systems) modelling makes use of certain fundamental laws to build a description of a 
process. These are the balance equations that describe the conservation of mass and the conservation of 
energy. Mechanistic modelling is very expensive in terms of human effort and expertise. It requires large 
amount of representative data and in many cases can only be acquired by perturbing the process via planned 
experiments. Mechanistic models are used to provide more realistic predictions and more can be done in 
terms of analysis (Davidovits, 2001). Mechanistic modelling is mostly used to develop white box models. 
Modelling techniques which can be utilized in mechanistic modelling approach include 
Shape/morphology/geometry, Mathematical, Piecewise functions, and mass and energy balance as well as 
chemical balance /metabolic kinematics techniques.  
 
1.6.3 Holistic Approaches  
In the holistic approach the biology of system decides the methodology for modelling it: - “let the system 
decide”. The unique properties of the biosystem including non-linearity of system dynamics, time-variant 
behaviour and emergent properties are factored in model development. The interaction of the system with 
other systems is also considered. This requires complete paradigm shift and involves development of 
completely new modelling methodologies that may incorporate human or other intelligence (Franklin et al., 
1992; Hall, 1998). Though most ideal, holistic approaches are difficult to implement in that they depend on 
prior understanding of the bio-physiological dynamics of the biosystem.  
Holistic approaches include phenomenological, statistical and biological equilibrium based modelling methods. 
 
1.6.4 Phenomenological Approach  
This holistic modelling approach considers biosystems as whole phenomena. The general behaviour is then 
modelled as fusion of the different characteristics of the system. It is used to develop black box models. For 
instance the health status of a human-being can be modelled as shown in figure 3.  
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Figure 3: Schematic model of health status of a human  
 
Modelling techniques which can be utilized in phenomenological modelling include inverse modelling, 
universal approximation and to some extent mass and energy balance techniques. 
 
1.6.5 Statistical Approach  
In this approach, the behaviour of a biosystem is modelled as the sum total of the behaviour of its building 
blocks as shown in equation 8. This approach majorly utilises system identification and building block 
techniques. The statistical approach can be used to develop white box, black box or grey box models. 
 
1.6.6 Biological Equilibrium Approaches 
This approach is based on the fact that biological systems always maintain a steady state and try to attain 
equilibrium whenever a perturbation from this steady state occurs. For instance a cell is a dynamic system 
that is continuously sensing its environment, processing information and outputting results or responding 
to the environment. It is self-correcting in that it tries to attain steady (equilibrium) state after any 
perturbation as illustrated in figure 4. Building block hypothesis and mass and energy balance modelling 
techniques can be utilised in biological equilibrium modelling approach.  

      
(a)                  (b) 

Figure 4: Illustration of cell as dynamic system (a) Illustration of a cell system that receives inputs (via sensors) 
from its environment processes the information received in the nucleus and outputs the results. (b) Illustration 
of self- correcting nature of a cell system  
 
1.6.7 Hybrid Approaches 
In the hybrid approach, the holistic and reductionist approaches are intelligently combined to achieve 
modelling of biosystems i.e. “let the situation decide”.  Where an existing engineering methodology can be 
used after some modification, then such methodology is adopted. If no existing engineering methodology can 
be used without unrealistically compromising the biology of the biosystem, then a completely new 
methodology is developed. Modelling techniques which can be utilised to hybrid approaches include building 
block technique, inverse modelling, piece wise functions, universal approximation and 
Shape/Morphology/Geometry. Models developed in hybrid approaches includen black box and grey box 
models. 
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2.0 Conclusions 
In this paper a number of modelling techniques and approaches have been presented. The modelling 
techniques highlighted include: system identification; shape/morphology/geometry modelling; inverse 
modelling; mathematical modelling; piece wise functions, universal approximation; building block methods 
and mass as well energy balance methods. The modelling approaches presented are categorised into 
reductionist (mechanistic (physical) modelling); holistic (phenomenological modelling, statistical modelling, 
biological equilibrium modelling) and hybrid (combinations of reductionist and holistic methods). The 
phenomenological, hierarchical and biological equilibrium approaches can be considered to be novel in 
modelling biological systems. While inverse modelling, piecewise function and building block hypothesis 
methods can be considered to be novel modelling techniques. Utilising these novel approaches and techniques 
will make it possible to develop fairly accurate models for biosystems. This will enable model based systems 
level understanding of biosystems.  A sytems level understanding of biological systems will enable 
development of engineered biological systems; development of new biologically based consumer bioproducts 
and biopharmaceuticals; advancement of the science of biomimetics; development of advanced control 
systems and structures for biosystems and development of personalized Medicare in addition to model based 
health care systems among other benefits. 
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