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Abstract 
In a series of papers, some authors have previously investigated and determined the spectrum of 
weighted mean matrices considered as bounded operators on various sequence spaces. Coskun (2003) 
determined the set of eigenvalues of a special Norlund matrix as a bounded operator over some sequence 
spaces. In 2010, Akanga, Mwathi, and Wali, determined the spectrum of a special Norlund matrix as a 
bounded operator on c0. It is evident that no research has been done on the spectrum of a general 
Norlund means. In this paper the spectrum of a special Norlund matrix as a bounded operator on the 
sequence space c is determined. This is achieved by applying Banach space theorems of functional 
analysis as well as summability methods of summability theory. In which case it is shown that the 
spectrum comprises the set 
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 Notations:    0;;;;; 0 pccT     tATp ;;;;0   , will denote the set of all  

      Complex numbers; the spectrum of T; the set all real numbers; the space of all convergent sequences; 
the space of null sequences; the space of sequences such that 
        

      




p

k
kx

0

; the space of bounded sequences; the norm of  T; the zero sequence; the       transpose 

of A. 
 
1.0 Introduction 
Functional analysis is often referred to as the queen of applied sciences. Indeed it finds a lot of 
applications through summability theory. Broadly speaking, summability is the theory of assignment of 
limits,which is fundamental in analysis. Spectrum of an operator plays a crucial role in development of a 
Tauberian theory of an operator, i.e., the determination of the limit of a convergent sequence or series 
from the convergence of its matrix transform.It also plays a central role in Fourier analysis, and analytic 
continuation of functions. 
 
1.1 Classical Summability 
The central problem in summabitiy is to find means of assigning a limit to a divergent sequence or sum to 
a divergent series. In such a way that the sequence or series can be manipulated as though it converges, 
(Ruckle,1981), pp. 159-161. The commonest means of summing a divergent series or sequence is that of 
using an infinite matrix of complex numbers, or by a power series. 
 
Definition 1.1.1 (sequence to sequence transformation) 
 

Let A =  nka  n, k = 0, 1, 2,…, be an infinite matrix of complex numbers. Given a sequence x =  
0kkx , 

define  
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,...2,1,0,
0

 




nay
k

nkn   ………………………………………………………………………………………………….…(1.1) 

If the series (1.1), converges for all n, then we call the sequence  
0nny , the  

A – transform of the sequence  
0kkx . If further, ,ayn  as n , we say that  

 
0kkx  is summable A to a. 

Examples of sequence to sequence transformations: 
 
Example 1.1.1 (Cesaro matix means) 

The matrix A =  nka , where 
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nank

,0
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1

  …………………………………………………………………………………………………… (1.2) 

Is called the Cesaro matrix of order 1, denoted by (C, 1), or, 1C . This matrix sums 

(1, 0, 1, 0,…) to 
2

1
. 

Example 1.1.2 ( Norlund means) 
The transformation given by 
     

k

n

k
kn

n

n xp
P

y 



0

1
, n =0, 1, 2,…………………………………………………………………………………….……… (1.3) 

Where nn ppppP  ...210 0 , is called Norlund means, and is denoted by            
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In matrix (1.4), if 0...,2,1 43210  ppppp ,then A =  nka   

Transforms the unbounded sequence (1,2,4,8,16,…) to zero. If 1np , for each 

n = 0, 1, 2, …, then    1,Cank  . If in matrix (1.4), 0...,1,1 43210  ppppp , 

then    nknk qa   - the Q matrix, given by 
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  ……………………………………………………………………………………………………(1.5) 

Which is the matrix of interest in this paper. 
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1.2  Some General Results in Classical Summability 
 
Definition 1.2.1 (Regular method, Conservative method) 

Let A =  nka , n =0,1,2,…, be an infinite matrix of complex numbers. 

(i) If the A – transform of any convergent sequence of complex numbers exists and converges, 
then A is called a conservative method. We, then write 

A  cc, . 
    (ii) If A is conservative and preserves limits, then A is called regular. We, then write 

          A  Pcc ,,  
Theorem 1.2.1 (Kojima – Shur) 

A  cc,  if and only if 

(i)  naa knk , , for each 0k ; 

  




naaii
k

nk ,
0

; 

  










 00

sup
k

nk

n

aiii  

(Maddox, 1970), pp. 166 – 167 
 
Theorem 1.2.2 

A  11,  iff 

  


0n
nkai , for each k; 

  


0

sup
n

nkk aii  

(Limaye, 1996), pp.88 – 90 
 
1.3  Some Results from Functional Analysis 
 
Definition 1.3.1 (Norm) 

  A norm on a real (or complex) vector space X is a real – valued function on X, whose value at an Xx is 

denoted by x , and which has the properties: 

( i )  0x  

( ii )  0x , iff x = 0 

( iii ) xx    

( iv ) yxyx  , where x, y X , and  . 

           ( Kreyszig, 1978 ), page 59. 
 
Example 1.3.1 

       ;1;;0 pcc p  are all normed linear spaces. Their norms are as follows: 

   ;;0 cc  have the same natural norm, namely x sup  nn x0 ;   pp 1 , 

Has natural norm  
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Definition 1.3.2 ( adjoint operator T
*

)  

The adjoint operator T
*

of a linear operator  YXBT ,  is the mapping from 
*Y to 

*X defined by  

            
** , YffoTofT   

 
Theorem 1.3.1 

*T is linear and bounded. Morever, TT *
 

   ( Dunford and Schwartz, 1957 ), page. 478. 
 

Definition 1.3.3 ( Resolvent set  T , spectrum  T  ) 

Let X be a non empty Banach space and suppose that .: XXT  The resolvent set  T  of T is the 

set of complex numbers,  , for which   1
 IT   exists as a bounded operator with domain X. The 

spectrum  T  of T is the compliment of  T  in  . 
 
Theorem 1.3.2 

Let  XT  , where X is any Banach space, the spectrum of 
*T is identical with the spectrum of T. 

      (Goldberg, 1966), page 71 
 
2.0 The Spectrum of Q Operator on c (Main Results)  
In this section, we determine the spectrum of Q matrix as an operator on c. 

Corollary 2.1  cBQ , moreover  

                                     1
1

* 


QQ
c  

Proof: The validity of parts (i ), ( ii ), and ( iii ) of theorem ( 1.2.1 ). From matrix (1.5 ) it is evident that  

            
,0lim 


nkq

n
for each 0k  …………………………………………………………………………………( 2.1) 

   and  1
00

 






n

k
nk

k
nk qq , for each n  ………………………………………………………………………………..(2.2) 

so that 
1lim 


nk

n

q
   …………………………………………………………………………………………………………. (2.3) 

Hence,   
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
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







1
00

sup
k

nk

n

a  ………………………………………………………………………………………………(2.4) 

Therefore  cBQ , moreover 1
c

Q  

 

Theorem 2.1 Let ccT :  be a linear map and define
*** : ccT  ,i.e., 

11
* :  T , by   goTgT *

, 1
*  cg . Then both T and 

*T  must be given by a matrix. 

Moreover 11
* :  T  is given by the matrix 
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where, 
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k
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                nkk
nnk TTPa   ; 

           nk
n
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
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
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k
n

k   …………………………………………………………….(2.6) 

             (Wilansky, 1984), page 267 
 

Corollary 2.2 Let ccQ : , then  1
* BQ  , moreover 

       



























...

.
2

1

.
2

1

.

000

...0
2

1

2

1
00

...00
2

1
10

...00001

  ……………………………………………………………………………………(2.7) 

 

Proof: By theorem (2.1)  1
* BQ  , moreover 
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But for Q matrix, nv , and   


0ka , since
0,0lim 



kqnk
n

; 

and   1lim Q , hence the result. 

 
 

Theorem 2.2:  cBQ , has only one eigenvalue, 1 , corresponding to the 

Vector  ,...1,1,1 x  
 

Proof: suppose, xQx  , x in c and . Then solving the system, we 

If 0x  is the first non- zero entry of x, then .1 But 1 , implies that 

......210  nxxxx c . Hence, 1 is an eigenvalue of Q. When 

 

,...2,1,0,1  nxn  is the first non-zero entry of x, then 
2

1
 . Solving the 
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system with 
2

1
 , results in ,...2,1,0,0  nxn , a contradiction. Hence  

 

2

1
  cannot be an eigenvalue of  cBQ . Hence the result. 

 

Theorem 2.3: The eigenvalues of  1BQ  form the set   
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



   

 

Proof: Suppose   xxQ ,*
and   

Then we have 

12100
2

1
, xxxxx   , and   2,

2

1
1   nxxx nnn   ………………………………………………. (2.9) 

Solving system (2.9) with 0,1 0  x gives the vectors 

                                             ,...0,0,,,,...0,0,0, 10
2

0
1 xxxxx   1 . Hence 1  

  is an eigenvalue of  1
* BQ  . Similarly slving the system for 2, nxn  in 

terms of 1x  yield 

                     
112  nn
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By the ratio theorem the vector is in 1 iff  
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Hence, the theorem. 
 
Theorem 2.4 

 









2

1

2

1
:  Q  

 

Proof: Solving the system   yxIQ   , for x in terms of y, yields 
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Which, yields the matrix 
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Also note that 

                  IMMMM   11
 

 

We now check that  cBM   
 

Columns of  M are null, provided       
 

1
1
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

nthterm

thtermn
 ……………………………………………………(2.14) 

 
Applying condition (2.14) to matrix (2.12), gives columns of M  
 

Are null provided,  is such that 
2

1

2

1
  .  

 

Remark 2.1 For any matrix  nkaA  , if 0,0lim  kankn , then  

 







0
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k

nkn a  (Maddox, 1970), page 164, or (Reade, 1985),page 266. 

 
Summing absolutely along the nth row of matrix M, gives 
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By remark (2.1) sup n   n ,  provided 
2

1

2

1
:   . Which deals with 

 
Parts (i), and (iii) of theorem (1.2.1) 
 

Now, 0,
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Which implies that, 


0
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k

nkn m , exists provided,   is such that 
2

1

2

1
 . 

Hence part (ii) of theorem (1.2.1) 
 

So that    
2

1

2

1
:,

1



 cBIQM . Hence, 

   
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1

2

1
:,

1



 cBIQM . Hence the theorem. 

 
3.0 Conclusion 

In this paper the spectrum of  cBQ  has been determined as  









2

1

2

1
:  Q . It has 

also been shown that  cBQ  has only one eigenvalue, 1 corresponding to the vector 

 ,...1,1,1 x . 
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