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Abstract 
Flow in a closed conduit is regarded as open channel flow, if it has a free surface. 
This study considers unsteady non-uniform open channel flow in a closed conduit 
with circular cross-section. We investigate the effects of the flow depth, the cross 
section area of flow, channel radius, slope of the channel, roughness coefficient 
and energy coefficient on the flow velocity as well as the depth at which flow 
velocity is maximum. The Saint-Venant partial differential equations of continuity 
and momentum governing free surface flow in open channels are highly nonlinear 
and therefore do not have analytical solutions. The Finite Difference 
Approximation method is used to solve these equations because of its accuracy, 
stability and convergence. The results are presented graphically. It is established 
that for a given flow area, the velocity of flow increases with increasing depth and 
that the velocity is maximum slightly below the free surface. Moreover, increase in 
the slope of the channel and energy coefficient leads to an increase in flow velocity 
whereas increase in roughness coefficient, flow depth, radius of the conduit and 
area of flow leads to a decrease in flow velocity.  
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NOMENCLATURE 

Symbol                       Quantity 
ܸ    Mean velocity of flow (m/s) 
   Length of the channel (m)   ܮ
݃	   Acceleration due to gravity (ms-2) 
ܳ    Discharge (m3s-1) 
 Cross- sectional area of flow (m2)    ܣ
݊    The Manning coefficient of roughness (sm-1/3) 
ܵ௢     Slope of the channel bottom  
௙ܵ     Friction slope 
ܲ    Wetted perimeter of the channel cross section (m) 
ܶ   Top width of the free surface (m) 
 Depth of the flow (m)    ݕ
 Time (s)   ݐ
 Lateral/uniform inflow (m2s-1)   ݍ
ܴ   Hydraulic Radius (m) 
 .Distance along the main flow direction (m) ݔ
 Froude number (dimensionless) ݎܨ
ܴ݁ Reynolds number (dimensionless) 
 Hydraulic depth (m) ܦ
 Kinematic viscosity (m2/s)  ߥ
 Energy coefficient ߙ
r  Channel radius (m) 
 
1.0 Introduction 
Water flows more rapidly on a steeper slope, but for a constant slope, the velocity 
reaches a steady value when the gravitational force is equal to the resistance to 
flow. Over the years, man has endeavoured to direct water to the desired areas 
such as farms, where it is used for irrigation. He has also tried to draw water from 
storage sites such as reservoirs, dams and lakes. To achieve this objective, he has 
constructed open channels which are physical systems in which water flows with a 
free surface. 
 
The cross-section of these channels may be open or closed at the top. The 
structures with closed tops are referred to as closed conduits while those with 
open tops are called open channels. This study focuses on open channel flow in a 
closed conduit with circular cross-section. The findings of this study will go a long 
way in providing reference for designers of open channel projects and guidelines 
for the hydraulic analysis and design of open channel flows. In addition, it will 
provide an understanding into the propagation of flood wave in natural rivers, 
originating from torrential rains or of breaking of a control structure. 
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Open channel flow is a familiar sight, whether in a natural channel like that of a 
river, or an artificial channel like that of an irrigation ditch. Its flow is a complex 
when everything is considered, especially with the variability of natural channels, 
but in many cases the major features can be expressed in terms of only a few 
variables, whose behavior can be described adequately by a simple theory. The 
principal forces at work are those of inertia, gravity and viscosity, each of which 
plays an important role. 

Open channels have been a subject of study for a long time. The Chézy equation is 
one of the earliest procedures developed in 1768 by a French Engineer, 
Henderson. The development of this equation was based on the dimensional 
analysis of the friction equation under the assumption that the condition of flow is 
uniform. Chézy's formula did not provide results that satisfied engineers. The Swiss 
engineers Ganguillet E. and Kutter W. R. in 1869 showed that much better results 
could be obtained if the constant C depended on ܴ, ܵ௢  and a constant ݊ that was 
characteristic of the roughness of the channel. 

A more practical procedure was presented in 1889 by the Irish engineer Manning 
R., Chow (1959). Studies in open channel flows have to take into account the 
coefficient of roughness, called the Manning coefficient. The Manning coefficient 
takes into account the bed materials, degree of channel irregularity, variation in 
shape and size of the channel and relative effect of channel obstruction, 
vegetation growing in the channel and meandering, Chadwick (1993). This makes 
the Manning equation more desirable for the design of open channels. 

Akbari G. and Firoozi B. (2010) investigated two different numerical methods, 
namely; Preissmann and Lax diffusive schemes for numerical solution of Saint-
Venant equations that govern the propagation of flood wave, in natural rivers, 
with the objective of the better understanding of this propagation process. The 
results showed that the hydraulic parameters play an important role in the flood 
wave propagation. 

Moshirvaziri S. et al (2010) examined numerically, the nature of pollutant 
connectivity between unsealed forest roads and adjacent nearby streams in terms 
of spatial and temporal patterns of runoff generation, erosion, and sediment 
transport with an aim of improving our ability to scale-up the impacts of forest 
roads on catchment water quality in future works. They considered the relative 
effects of rainfall intensity and duration, surface roughness, infiltration rate, 
sediment detachment and transport with an objective of identifying the dominant 
processes and parameters that affect the degree of pollutant connectivity between 
roads and streams.  
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Kwanza, J. K. et al. (2007) analyzed the effects of channel width, slope of the 
channel and lateral discharge on fluid velocity and channel discharge for both 
rectangular and trapezoidal channels. They noted that the discharge increases as 
the specified parameters are varied upwards. Chagas and Souza (2005) sought to 
provide solution of Saint Venant’s Equation to study flood in rivers through 
Numerical Methods. They used a discretization, for the equations that governs the 
propagation of a flood wave, in natural rivers, with the objective of a better 
understanding of this propagation process. Their results showed that the hydraulic 
parameters play an important role in the propagation of a flood wave.  

Khan A. A. (2000) studied open channel flow over an initially dry bed with the aim 
of better understanding of flow over islands during rising flood stage, flow 
downstream of the hydraulic structures (such as dams and gates) during 
intermittent release of water, and flood wave, either due to natural causes or 
sudden failure of a hydraulic structure, over an initially dry bed. Tuitoek and Hicks 
(2001) modeled unsteady flow in compound channels with an aim of controlling 
floods.  

2.0 Mathematical Formulation 
The basic equations that describe unsteady one-dimensional fluid flow in an open 
channel are the Saint Venant equations, which consist of continuity and 
momentum equations. In the development of the mathematical model, some 
simplifications are made: the flow is considered one-dimensional, the distribution 
the pressure in the vertical is a hydrostatic one, the fluid considered is water. The 
fluid is assumed incompressible and homogeneous. Thus for prismatic channels of 
arbitrary shape, the model equation, which consists of the continuity and 
momentum equation, is defined as: 

߲ܳ
ݔ߲

+
ܣ߲
ݐ߲

=  (1)																																																																																		ݍ

߲ܸ
ݐ߲

+ ܸߙ
߲ܸ
ݔ߲

+ ݃
ݕ߲
ݔ߲

= ݃൫ܵ௢ − ௙ܵ൯																																																					(2) 

Given the velocity, the discharge (ܳ) is calculated as the product of velocity and 
cross-sectional area  

ܳ =  (3)																																																																																																ܸܣ

Substituting equation (3) in equation (1) above and then differentiating partially 
w.r.t ݔ yields: 

ܸ
ܣ߲
ݔ߲

+ ܣ
߲ܸ
ݔ߲

+
ܣ߲
ݐ߲

− ݍ = 0																																																												(4) 
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The flow area is assumed to be a known function of the depth; therefore 
derivatives of ܣ may be expressed in terms of ݕ as: 

ܣ߲
ݔ߲

=
ܣ݀
ݕ݀

ݕ߲
ݔ߲

= ܶ
ݕ߲
ݔ߲
																																																																								(5) 

ܣ߲
ݐ߲

=
ܣ݀
ݕ݀

ݕ߲
ݐ߲

= ܶ
ݕ߲
ݐ߲
																																																																								(6) 

               In this discussion, it is assumed that ܶ is as determined by Franz (1982) 

ܶ =
ܣ݀
ݕ݀

																																																																																				(7) 

Substituting equations (5) and (6) in equation (4) yields: 
ݕ߲
ݐ߲

+
ܣ
ܶ
߲ܸ
ݔ߲

+ ܸ
ݕ߲
ݔ߲

−
ݍ
ܶ

= 0																																																												(8) 

 
3.0 Method of solution 
The objective of this paper is to investigate the effects of the various flow 
parameters on the velocity profiles of a fluid flow in an open channel with circular 
cross section area as shown in figure A below  
 
                               r  
      

 

 

Figure A:  Channel cross section 
An analysis of the effects of the various parameters on the flow velocity has been 
carried out. The equations governing the flow considered in the problem are non-
linear and therefore to obtain their solutions, an efficient finite difference scheme 
was developed. The mesh used in the problem considered in this work is divided 
uniformly.  
 
Equations (2) and (8) are non-linear first order partial differential equations of the 
hyperbolic type. It is not possible to solve these equations analytically thus the 
finite difference method is used to obtain approximate solutions. In this technique, 
the numerical solution of equations (2) and (8) is approximated at a discrete 
number of points arranged to form a rectangular grid. This rectangular grid is 
obtained by dividing the (ݔ,  ݔ∆ plane into a network of rectangles of sides (ݐ
and	∆ݐ. The nodes or mesh points or grid points of the network occur at the 
intersections of straight lines drawn parallel to the ݔ and ݐ axes. We are assuming 
the grid size is uniform along each axis. For brevity, we will call the ݅∆ݔ grid point ݅ 



JAGST Vol. 13(2) 2011                                                                          Modelling fluid flow                                                                           
  

 Jomo Kenyatta University of Agriculture and Technology                                         85 

and the (݅	 + 	݅	grid point ݔ∆(1	 + 	1. For the time axis, we will call ݆∆ݐ grid point	݆ 
and the (݆	 + ݆ grid point ݐ∆(1	 + 1. To refer to different variables at these grid 
points, we use the number of the spatial grid and that of the time grid as the first 
and second subscript respectively. We denote the known time level by ݆ and the 
unknown time level by ݆	 + 	1. The primary difficulty with explicit finite difference 
techniques is the problem of numerically unstable solutions. The partial derivatives 
in the equations are replaced by their corresponding finite difference 
approximations. However, Viessman et al. (1972) noted that more stable solutions 
can be obtained if a diffusing difference approximation is used. Using this scheme, 
equations (8) and (2) become: 
 
,݅)ݕ ݆ + 1) − ݅)ݕ)0.5 − 1, ݆) + ݅)ݕ + 1, ݆))

ݐ∆
+
ܣ
ܶ
ܸ(݅ + 1, ݆)− ܸ(݅ − 1, ݆)

ݔ∆2
+ ܸ(݅, ݆)

݅)ݕ + 1. ݆)− ݅)ݕ − 1, ݆)
ݔ∆2

−
ݍ
ܶ

= 0																																																				(9) 

ܸ(݅, ݆ + 1) − 0.5൫ܸ(݅ − 1, ݆) + ܸ(݅ + 1, ݆)൯
ݐ∆

+ ,݅)ܸߙ ݆)
ܸ(݅ + 1, ݆) − ܸ(݅ − 1, ݆)

ݔ∆2

+ ݃
݅)ݕ + 1, ݆) − ݅)ݕ − 1, ݆)

ݔ∆2
− ݃ቆܵ଴ −

௙ܵ(݅ − 1, ݆) + ௙ܵ(݅ + 1, ݆)
2

ቇ

= 0									(10) 

From equation (9) 

,݅)ݕ ݆ + 1) = ݅)ݕ]0.5 − 1, ݆) + ݅)ݕ + 1, ݆)]

− ݐ∆ ቊ
ܣ
ܶ
ܸ(݅ + 1, ݆)− ܸ(݅ − 1, ݆)

ݔ∆2
+ ܸ(݅, ݆)

݅)ݕ + 1, ݆) − ݅)ݕ − 1, ݆)
ݔ∆2

−
ݍ
ܶ
ቋ							(11) 

In the computation of unsteady flow, it is usually assumed that the friction slope ௙ܵ  
can be estimated from either the Manning or Chezy resistance equations. The 
Manning resistance equation is as follows: 

௙ܵ =
݊ଶܸଶ

ܴସ ଷ⁄ 																																																																								(12) 

Substituting equation (12) in equation (10), it is possible to find 
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ܸ(݅, ݆ + 1) = 0.5[ܸ(݅ − 1, ݆) + ܸ(݅ + 1, ݆)]

− ݐ∆ ቊܸߙ(݅, ݆)
ܸ(݅ + 1, ݆) − ܸ(݅ − 1, ݆)

ݔ∆2

+ ݃
݅)ݕ + 1, ݆) − ݅)ݕ − 1, ݆)

ݔ∆2

− ݃ ቈܵ଴

−
݊ଶ

2ܴସ ଷ⁄ ൫ܸଶ(݅ − 1, ݆)

+ ܸଶ(݅ + 1, ݆)൯቉ቋ																																																																																	(13) 

In equations (11) and (13), the index  ݅ refers to spatial points whereas the index ݆ 
refers to time. The consecutive terms of depth and velocities ݕ௜,௝ାଵ and ௜ܸ,௝ାଵ 
respectively are computed by equations (11) and (13) subject to the initial and 
boundary conditions 

,ݔ)ܸ 0) = ,ݔ)ݕ					,	10 0) = 0.5					for	all	ݔ > 0																															(14) 
ܸ(0, (ݐ = ,0)ݕ					,	10 (ݐ = 0.5			for	all	ݐ > 0																																			(15) 
௟ݔ)ܸ , (ݐ = ௟ݔ)ݕ					,	10 , (ݐ = 0.5						for	all	ݐ > 0																															(16) 

The computations are performed using small values of ∆ݐ. In our research, we set
ݐ∆   = ݔ∆	݀݊ܽ	0.0012 = 0.1. From equation (11), 
the depth ݕ at the end of the time step ∆ݕ,ݐ௜,௝ାଵ		݅ = 1,2,3, … ,40	is computed in 
terms of velocities and depths at points on earlier time step. Similarly, ௜ܸ,௝ାଵ is also 
to be computed from equation (13). The procedure repeated till ݆ = 50.  

4.0 Discussion of the Results 
From figure 1, we observe that for a fixed flow area the flow velocity increases 
with increase in depth from the bottom of the channel to the free stream and that 
maximum velocity occurs just below the free surface. The free surface occurs at a 
depth of 0.5m and the velocity of the fluid layer at this depth is 10m/s.  It is also 
observed that maximum velocity occurs just below the free surface, at a depth of 
about 0.38m.  
 
The flow velocity in a channel section varies from one point to another due to 
shear stress at the bottom and at the sides of the channel. The velocity is not 
maximum at the free surface mainly due to surface tension caused by the strong 
cohesive forces between the liquid molecules. In the bulk of the liquid, each 
molecule is pulled equally in every direction by neighboring liquid molecules, 
resulting in a net force of zero. The molecules at the free surface do not have other 
molecules surrounding them entirely and are therefore pulled inwards. This 
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creates some internal pressure and forces liquid surfaces to contract to the minima 
leading to a reduction in velocity at the free stream. On the other hand, both the 
atmospheric pressure and gravity acting in a direction that is perpendicular to the 
free surface creates some internal pressure causing the contraction of the liquid 
surface. This contraction lowers the movement of the fluid particles at the free 
surface resulting in reduced velocities. In addition, the wind blowing over the free 
surface also affects the velocity in the free stream due to frictional resistance 
particularly when wind blows over the free surface at high velocities and in the 
opposite direction to the main direction of flow.  
From figure 2, we observe that a reduction in the slope from 0.02 m/m to 0.004 
m/m leads to a decrease in the flow velocity as shown from curve I to curve II. An 
increase in the cross sectional area of flow from 0.6144 m2 to 1.5712 m2 results to 
a decrease in the flow velocity from curve I to curve III. 

Manning’s velocity formula shows a direct relationship between flow velocity and 
the slope. Thus a decrease in slope results in a decrease in the flow velocity. An 
increase in the cross-sectional area of flow leads to an increase in the wetted 
perimeter. A large wetted perimeter results in high shear stresses at the sides of 
the channel which results in a reduction in the flow velocity. 

From figure 3, we observe that increasing the radius from 1 m to 3 m results in a 
decrease in the flow velocity from curve I to curve II. Moreover, an increase in the 
roughness coefficient from 0.012 to 0.029 also results in a reduction in the flow 
velocity as shown from curve I to curve III. 

An increase in the radius results in an increase in the wetted perimeter because 
the fluid will spread more in the conduit. A large wetted perimeter will result in 
large shear stresses at the sides of the channel and therefore the flow velocity will 
be reduced. An increase in the roughness coefficient results in large shear stresses 
at the sides of the channel. This means that the motion of fluid particles at or near 
the surface of the conduit will be reduced. The velocity of the neighbouring 
molecules will also be lowered due to constant bombardment with the slow 
moving molecules leading to an overall reduction in the flow velocity. 

 From figure 4, we observe that an increase in the energy coefficient from 1 to 2 
leads to an increase in the flow velocity from curve I to curve II. In addition, an 
increase in the flow depth from 0.5m to 1m results in a reduction in the flow 
velocity from curve I to curve III. 

An increase in the energy of the fluid results in the molecules attaining high energy 
which leads to more random motion. This random motion causes constant 
bombardment between the fluid particles resulting in an increase in velocities of 
the molecules and in general, of the fluid. The increase in flow depth leads to an 
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increase in the wetted perimeter. This leads to large shear stresses at the sides of 
the channel and therefore the flow velocity will be reduced. 

5.0 Conclusion 
The various flow parameters were varied, one at a time while holding the other 
parameters constant. This was repeated for all the flow parameters and the results 
presented graphically. It was established that for a fixed flow area, the flow 
velocity increases with increase in depth from the bottom of the channel to the 
free stream and that maximum velocity occurs just below the free surface. 
Reduction in the slope leads to a decrease in the flow velocity. An increase in the 
cross sectional area of flow results in a decrease in the flow velocity.  
An increase in the radius of the conduit results in a reduction of the flow velocity. 
This is because, as the radius is increased, so is the wetted perimeter as the fluid 
spreads more in the conduit. Moreover, an increase in the roughness coefficient 
results in a decrease in the flow velocity due to large shear stresses at the sides of 
the channel.  
 
An increase in the energy coefficient leads to an increase in the flow velocity due 
to an increase in the energy of the fluid resulting in an increase in the molecular 
energy which leads to more random motion. Finally, an increase in the flow depth 
results in a reduction in the flow velocity. The increase in flow depth leads to an 
increase in the wetted perimeter resulting in large shear stresses at the sides of 
the channel with an effect of reduced velocities. 
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Figure 1: Velocity profiles for A = 0.6144, So =0.02, r = 1, n = 0.012, α = 1, P = 2.0947 

 
   

 
 

Figure 2: Velocity profiles for r = 1, n = 0.012, α = 1, P = 2.0947 
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Figure 3: Velocity profiles for A = 0.6144, So =0.02, α = 1, P = 2.0947 

 

 
 

Figure 4: Velocity profiles for A = 0.6144, So =0.02, r = 1, n = 0.012 
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