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ABSTRACT
Forest resources contribute significantly to the Kenyan economy. However, due 
to pressures exerted by the growing population, this scarce resource is seriously 
endangered. In particular, the Kakamega Forest has experienced serious degradation in 
the past, though some restoration efforts have also been put in place. In this research, we 
utilise time series Landsat imagery to characterise the changes and capture the trends 
in land cover changes. Three epochs are utilised, namely, 1986, 1995 and 2005.
Pre-processing involved georeferencing and radiometric corrections. As a first step the 
time series imageries were evaluated via a threshold analysis distinguishing between 
‘forest’ and ‘non-forest’. Subsequently, a supervised multispectral classification 
was performed distinguishing various land cover classes. Ground truthing for the 
historical imagery was done using aerial photographs, topographic maps and site 
visits. Actual land cover verification was based on amateur photographs taken in 1999 
from an aircraft, and ground observations in 2008. For classification the maximum-
likelihood decision rule was applied considering bands 3, 4, 5, 7 plus 7/2 for thematic 
mapper (TM)/enhanced thematic mapper plus (ETM+) imagery and 1, 2, 3 and 4 
for Multi-spectral scanner (MSS) data, respectively. The classification results form 
a solid basis for a consistent and detailed evaluation of forest history between 1986 
and 2005. Analysis results presented include graphs and pie charts of change in land 
cover class areas over time as well as such allowing for true change detection with 
transitions between the different classes. In this study, maximum likelihood supervised 
classification change detection techniques were applied to Landsat images acquired 
in 1986, 1995 and 2005 respectively. To map land cover changes in kakamega forest, 
a supervised classification was carried out on the six reflective bands for the three 
images individually with the aid of ground truthing data. Changes among different 
land cover classes were assessed. During the study period, a very severe land cover 
change had taken place as a result of agricultural and settlement. These changes in 
land cover led to vegetation degradation. The effects of restoration efforts are 
also captured in the research findings.

Key words: Land-cover mapping, image classification, change detection
1.0	 INTRODUCTION
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Forest resources contribute significantly to Kenya’s economy. The agricultural sector, 
the tourism sector, manufacturing and processing industry which are the backbone of 
the country’s economy, directly or indirectly, rely on the dwindling forest resources. 
Kenya’s major river systems (Tana, Athi, Ewaso Nyiro, Nzoia, and Yala) source 
their water from mountain forest catchment areas. These rivers traverse the country, 
providing fresh water for domestic use, industrial processing, irrigation and hydro-
electricity generation. River Tana alone supplies water for the Seven Folk hydro-electric 
power stations, providing more than half of the country’s electricity. In addition, forests 
provide building and weaving materials, pulp for the paper industry, herbal medicine, 
wild fruits and honey. They regulate rainfall patterns, reduce sedimentation load in 
our rivers and provide environmental stability.
	 The monitoring of land cover/land use (LCLU) using satellite imagery has 
been adequate for general extensive synoptic coverage of large areas (Lillesand                       
et al., 2004; Jensen, 2000). As a result, this has reduced the need for expensive and 
time consuming ground surveys conducted for validation of data. In general, satellite 
imagery has been able to provide frequent data collection on a regular basis, unlike 
aerial photography which provides more geometrically accurate maps, but are limited 
with respect to extent of coverage and expense.
	 In this paper, the term ‘land cover’ relates to the type of feature present on the 
surface of the earth such as agriculture fields, lakes, rivers, trees and buildings. On 
the other hand, the term land use relates to the human activity or economic function 
associated with a specific piece of land, with examples being a tract of land on the fringe 
of a forested area that may be used for family housing or agriculture. Depending on the 
level of mapping detail, its land use could be described as, residential or agricultural 
use. The same tract of land would have a land cover consisting of roofs, pavement, 
grass, and trees (Lillesand et al., 2004). For simplicity, we adopt the term ‘land-cover’ 
in the rest of the paper to refer to both terms since land cover can be inferred from 
imagery but land use may need further verification.
	 Digital change detection is the process of determining and/or describing 
changes in land-cover and landuse properties based on co-registered multi-temporal 
remote sensing data. The basic premise in using remote sensing data for change 
detection is that the process can identify change between two or more dates that 
is uncharacteristic of normal variation. Numerous researchers have addressed the 
problem of accurately monitoring land-cover and land-use change in a wide variety 
of environments (Srivastava and Gupta, 2003; Künzer et al., 2005; Bhattacharya et 
al., 2005, Herold et al., 2002). There are many techniques available to detect and 
record differences (e.g., image differencing, ratios or correlation) and these might be 
attributable to change (XiaoMei and RongQing 1999). However, the simple detection of 
change is rarely sufficient in itself: information is generally required about the initial and 
final land cover or types or land uses. Furthermore, the detection of image differences 
may be confused with problems in phenology and cropping, and such problems may 
be exacerbated by limited image availability and poor quality in temperate zones, 
and difficulties in calibrating poor images. Post-classification comparisons of derived 
thematic maps go beyond simple change detection and attempt to quantify the different 



Journal of Agriculture, Science and Technology 

93

types of change.
	 The degree of success depends upon the reliability of the maps made by image 
classification. Broadly speaking, large-scale changes such as widespread logging 
or major urban development might be mapped reasonably easily, while in the case 
of evolutionary changes such as erosion, succession, colonisation or degradation, 
boundaries may be indistinct and the class-labels uncertain (Mitchell et al., 2006; 
Schaab et al., 2005).
	 Remote sensing is a powerful tool in the provision of such information. It 
involves the acquisition of information about an object, area or phenomenon through the 
analysis of data acquired by a device that is not in contact with the object, phenomenon 
or area under investigation (Lillesand et al., 2004). Sensors aboard satellites in space 
record the amount of electromagnetic energy reflected from various objects on the 
earth’s surface at various wavelengths. From the spectral response patterns, information 
about the objects is derived. Through the analysis of remotely sensed data for different 
epochs, change detection is possible. With time change analysis and monitoring of 
forest destruction can be done. The knowledge acquired from this information forms 
a basis for decision making in efforts to address the deforestation menace. It is in this 
vein that this research was carried out to establish factual information on the state of 
Kakamega Forest which is reportedly in danger of extinction and has attracted attention 
from the public and many environmental organisations.
	 This research aims at mapping the forest resources for the purpose of 
determining and assessing the rate at which the forest is depreciating by the finding 
the most affected areas so that necessary corrective actions may be taken to curb 
deforestation of the forest. Inadequate forest statistics and maps are a limiting factor 
in many tropical countries including Kenya. Quite often, the available forest data 
are outdated and of little help in the planning and management of forest resource. 
The problem facing high and medium potential areas of Kenya with regard to forest 
management is that of a rapidly growing population, leading to increased pressure 
on land as a source of livelihood. To determine the right formula of allocating 
land to settlements, agriculture, forestry, or any other land uses without making 
one aspect suffer presents a great challenge. For forest-based resources, an 
essential requirement is to establish the types, extent and present condition of 
these forests.
	 The main objective of this research was therefore to provide information 
and generate a database on the status of the Kakamega Forest resource and land 
cover changes to facilitate sustainable management geared towards conservation 
of both the forest and its habitat. To achieve this broad objective, the task was 
split into several sub-tasks, namely :
(i) 	 To provide maps showing changes in forest cover for the period 
between 		  1986,1995 and 2005, 
(ii) 	 To provide land cover map within the forest for the years 1986, 1995 
and 		  2005, and, 
(iii) 	 Build a framework for facilitating further research in the forest.
2.0	 STUDY AREA, DATA AND METHODOLOGY
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2.1 	 The Study Area
Kakamega Forest is situated in Western Province in Kenya (34° 37’ 5” - 35° 9’ 25” 
East and 0° 32’ 24” North - 0° 2’ 52” South) as shown in Figure 1, North-West of the 
capital Nairobi, 15 km from Kakamega Town along the Kakamega - Eldoret Highway. 
Along the North Eastern edge of the Lake Victoria basin at an altitude of 1,500-1,600 
metres above the sea level, Kakamega Forest is a remnant of rain-forest which once 
spanned the Equator from the West to East coasts of Africa. Gazetted as a Trust 
Forest in 1933, it covered an area of 240 km2, a little less than half of which currently 
remains as indigenous forest. The forest is closely associated both geographically and 
biologically with other two smaller forest blocks namely Kisere (484 ha) located 6 
km to the north and Malava (718 ha) also located 12 km to the north (Kenya Wildlife 
Service, 2007).
	 Kakamega Forest covers an area of about 240 km2 and was established to 
protect the only mid altitude tropical rain-forest in Kenya, a remnant and eastern limit of 
rain-forests of Zaire and West Africa. The forest contains many species found nowhere 
else in the country and Africa. It was established as a protected area by the Government 
of Kenya (GoK) (KIFCON, 1994). The forest lies in the Lake Victoria catchment basin, 
about 50 km north of Kisumu City and just West of the Nandi Escarpment that forms 
the edge of the central highlands.

Figure 1: Location of the study area (Kakamega Forest) in western Kenya
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The average annual rainfall is about 2000 mm. The long rains fall between March and 
May, with a short rain season from October to November. Rain falls mostly in the 
afternoon or early evening and is often accompanied by heavy thunderstorms. Average 
temperatures remain almost similar throughout - between 15° C and 28° C.
	 It was first gazetted as a Trust Forest in 1933 and two small nature reserves, 
Yala and lsecheno were established within the forest in 1967. In 1985, nearly 4400 
ha of the northern portion of the forest together with the adjacent Kisere Forest were 
gazetted as Kakamega Forest National Reserve (KIFCON, 1994). The forest is a high 
biodiversity area, including over 300 species of birds, and over 350 species of plants 
(Köhler 2004). The terrain is undulating, with often steep sided river valleys.
	 In efforts to maintain and preserve wildlife diversity, the importance of 
preserving a fragile ecosystem like forests cannot be overstated. With their unique 
flora and fauna, forests are important resource reserve for genetic banks, the medicine 
industry, nutrient recycling and carbon dioxide sequestration. The loss of such systems 
would therefore be a great loss to humanity (Blackett, 1994).

2.2 	 Data
This research aims to map and assess Kakamega Forest resources from 1986 to 2005 at 
a 10-year interval and determine the changes in forest cover (increase and/or decrease) 
that have taken place. Various sets of data were used to map and carry out analysis on 
the study area. The data used are given in Table 1.

Table 1:Characteristics and sources of data used in the research

Satellite imagery	 Landsat series -30 m resolution	 Regional Centre for Mapping 		
		  of the resources for 			 
		  Development (RCMRD)
Rainfall data                	 Raingauge records                  	
Kenya   Meteorological Service                                                                                       
Economic activities    	 Census  records                                 	  Central Bureau of  Statistics
Population data          	 Census records                                        	 Central  Bureau of  Statistics
Topographical maps 	 scale 1/50000                                        	 Geomatic Engineering  and Geospatial 	
		  Information System department 

 Aerial photographs   	 Kakamega forest air photographs           	 Kenya Forest Service

Figure 2  shows georeferenced false colour composite images used for the three epochs 
used in this research. Combinations of Landsat bands are combined using RGB (red-
green-blue) colours to obtain false colour composites with various combinations being 
suited for particular applications. Table 2 lists some of these false colour composites 
and typical applications areas.
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(a) 1986	 (b) 1995

(c)  2005

Figure 2:  	 False color composite Landsat satellite imageries for the 3 time 		
	 periods- band 4 (red), band 3 (green) and band 2 (blue)
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Table 2: Colour composite combinations and viable application areas

Composite                                        	  Application

True colour    (1,2,3)                                 	 Mainly used to water study
False colour   (2,3,4)                                	Vegetation and water distintion
False colour  (2,4,5)                      	 Built up and cleared areas distinction
False colour  (2,4,7)                                	Vegetation distinction

2.3 	 Methodology
The methodology adopted in this research is as follows:
Step 1 Coordinate transformation (georeferencing) to WGS 84 UTM 36 South
Topographical maps were georeferenced prior to digitisation. This formed the base 
upon which subsequent image georeferencing could be tied to.

Step 2 Digitisation of topographic maps of Kakamega Forest.
The gazetted forest boundary, topographic features and other key features within 
a stretch of about 50 km around the forest was digitized from the georeferenced 
Kakamega and Kaimosi topographic sheets (Figure 3). This formed the base map for 
geo-referencing interpreted data and overlaying the images from Landsat satellite.

Figure 3: Digitised land cover classes
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Step 3 Layer stacking of all bands for the 3 epochs
Kakamega area had portions imaged in different scenes. Prior to stacking, the images 
were compared and variations in contrast addressed by contrast enhancement and 
histogram equalisation (where feasible). These scenes were then layer stacked to 
prepare a mosaic of the entire area.
	 The Kakamega Forest land cover mapping mainly used satellite remote sensing 
data with 30 m ground resolution from Landsat satellite series. Bands 1, 2, 3, 4, 5, 7 
were layer stacked to form a colour composite. This was done on all the images for 
the different years, 1986, 1995 and 2005. The scenes used were as follows: Landsat 
Multi Spectral Scanner (MSS) scene of 22nd September 1986, Landsat Thematic 
Mapper (TM) scene of 22nd February 1995 and Landsat Enhanced Thematic Mapper 
Plus (ETM+) scene of 22nd September 2005.

Step 4 Image to map geometric correction
The geographically correct digitised features (forest cover) were used to perform image 
to map registration. This was done for each mosaic for the three epochs.

Step 5 Image to image geometric correction
Residual geometric distortion (small amounts) was addressed through image to image 
registration. In both Step 4 and Step 5 cubic convolution was used as the resampling 
method, with the pixel resolution being retained as 30 m.
Linear resampling was performed using four well defined and distributed control points. 
The result was refined by iteratively recomputing the root mean squares (RMS) with 
improved correspondence file coordinates until an acceptable RMS of below 0.5 was 
obtained for all control points. False colours (red, green and blue) composites were 
generated from these scenes (see table 2). The Landsat satellite scenes used had a 
spatial resolution of 30 m x 30 m, each scene covering 185 km x 185 km. Total-cover 
panchromatic aerial photographs of scale 1:10000 taken along the forest edge in 1986, 
1995 and 2005.
	 Stereo viewing of the photographs gave detailed impression of the cover 
classes on the forest. Aerial photographs were used to provide information missing 
out in parts of the forest.

Step 6 Image subsetting
These scenes were then clipped for an area of about 20 km x 20 km (UTM zone 36 S: 
680,000 - 740,000 E by -5,000 - 60,000 N; ellipsoid Clarke 1880, datum Arc 1960). 
Atmospheric and terrain shading effects were corrected based on a digital terrain 
model derived from the 1:50,000 topographic maps contours. For an improved visual 
interpretation of the scenes on the screen a piece-wise linear transformation (via 
breakpoints) was applied for band combination 5/4/3 (ETM+ and TM) and 2/4/1 
(MSS), respectively. The images were subset to focus on the forested portion. This 
smaller image has the added advantage of being processed fairly fast compared to 
processing of the entire mosaic.

Step 7 Classification of the images
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The first step towards a classification of the landscape was a threshold analysis aimed 
at generation of binary images distinguishing ‘forest’ from ‘non forest’. This distinction 
was made by performing multispectral classifications independently for these two major 
land-covers. The different spectral channels were evaluated to assess their suitability. 
Band 2 (green) for TM and ETM+, and Band 1 (green) for MSS, were found to be best 
for separating ‘forest’ and ‘no forest’. At first, forested areas were derived by overlay 
techniques combining the resulting threshold images and raster layers of the official 
forest areas digitised from topographic maps. However, though temporal changing 
patterns of forest losses and replanting were observed, in total there was no major 
change in forest-cover utilizing this single band thresholding approach.
	 What was needed for describing forest fragmentation and disturbances in 
detail was to distinguish between more land cover classes in order to separate natural 
forest from secondary forest, or even young forest plantation. Furthermore, the results 
of the threshold analysis demonstrate that a truly satisfying separation of ‘forest’ and 
‘no forest’ was not possible when considering just one spectral band.The rationale 
underlying the traditional approaches to computer-assisted land cover classification 
using multispectral digital remote sensing data is that pixels from within the same 
land cover class tend to group together or cluster in multi-spectral feature space, 
and that pixels from different cover classes tends to be separate from one another in 
multi-spectral feature space. The tendency of pixels from within the same land cover 
class to form spectrally distinct clusters is the foundation of the algorithm employed 
in this work for thematic feature extraction and classification. Computer-assisted 
classification of digital multi-spectral remote-sensing data can be partitioned into two 
general approaches: supervised and unsupervised. We adopted supervised classification 
in this work. In this, an analyst selects ‘training areas’ that are spectrally representative 
of the land cover classes of interest.
	 From these training areas, univariate and multivariate statistics, such as mean 
vector, standard deviation, variance and covariance, are first calculated and then used 
to classify each independent pixel of the entire image being examined. Decision rules 
can be non-parametric, such as minimum Euclidean distance to means, or parametric, 
such as Gaussian maximum likelihood (Lillesand et al., 2004; Sabins, 1978). Supervised 
training area selection and classification requires a priori decisions on the part of the 
analyst before resorting to computer-assisted classification. Because of its strong 
theoretical and statistical soundness, the maximum likelihood classification algorithm 
was chosen in this work. Signature data was derived for each of the epochs based 
on features identifiable per epoch during the training stage. This approach addresses 
possible problems that are encountered using multi-date imagery.

Step 8 Accuracy assessment
To verify the quality of the classification exercise, accuracy evaluation was done. This 
was done using ground truth data collected from the field for a sample comprising of 
fifty (50) locations (targets).

Step 9 Change matrix calculations
This was done to obtain the amounts of change for the various feature classes. In the 
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post classification comparison approach two or more images were independently 
classified and registered, and through the use of a pixel-by-pixel comparison algorithm, 
those pixels that indicate changes between images were determined (Lillesand, et al., 
2004). Further, change maps and change matrix statistics were computed to quantify 
and explain the specific changes.

2.4 	 Analysing Land Cover Changes
A geographical information system (GIS) is an appropriate tool for the assessment of 
land degradation and as an aid to conservation planning since it allows the simultaneous 
examination of attribute data for the same geometric feature, thus enabling interpretation 
of a range of interrelated geospatial information for the same area (Korte 1993). GIS 
is particularly suitable for comprehensive storage of data at different geographical 
scales and permits cross analysis of data especially involving time series analysis 
and spatial statistics (Lyon, 2003). GIS can be used to provide not only important 
information on vegetation patterns in time, but also information on the spatial variation 
of management variables themselves in relation to land attributes and management 
decisions (Worboys, 1995). Exploratory spatial data analysis is used to describe and 
visualise spatial distributions and to identify typical locations, thus patterns of spatial 
association can be recognized (Usery, 1996).
	 The simplest landscape metric for assessing changes in landscape composition 
over a period of time is the proportion metric. This tends to assess the composition 
ratio on the different land covers in a landscape. The proportion metric is expressed as 
a percentage of the spatial extent of the landscape being considered. A proportion value 
of a land cover category close to zero percent implies that the land cover category is 
almost non-existent in the landscape. While a proportion close to 100 % implies that the 
land cover dominates the entire landscape. GIS capabilities allow for the computation 
of proportion metrics alongside visualisation of trends.
	 In this research the above approach was used to get dynamics of land covers 
beginning from 1986, 1995 and 2005. Changes in terms of areas and percentages were 
obtained as well as rates of change. Seven land cover classes of the Kakamega forest 
were decided upon based on knowledge of the area and the shapes, colour, tones and 
patterns of the false color composite satellite images. The classes were namely, natural 
forest; grassland; built-up areas;  plantation (hardwood); plantation (softwood); tea 
zone and  agriculture.

Table 3: Visual characteristics of identified classes
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Interpretation class                            		  Image charateristics

Natural forest                                                       		  Dark brown/dark red with 
black mottled coarse 			   texture

Grassland                                                              Isolated patches of green/blue occuring as 
large 			   islands in thedark brown shades   

Tea zones                                                           		  Purple elongated areas along 
the forest edge

Softwood plantations                                         		  Dark brown shades smooth to 
fine texture 				    occasionally separated by 
bluish/greenish 				    strips

Hardwood plantations                                       		  Bright red shades with 
smooth textures
 

Agriculture                                                       		  Greenish shades with dense 
mottles of purple, 			   rough texture or  bluish shade light 
brown 				    mottled medium texture

Cleared forest/built up areas                            		  Black expansive patches      

In identifying these classes, their characteristic appearance on the satellite imagery was 
used. These characteristics are summarised in Table 3. These spectral classes
I were validated using information classes derived from aerial photographs and field 
visits.

3.0	 RESULTS AND DISCUSION
Figure 4 shows the classified images. Shown here are the seven identified classes. 
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(a) 1986	           (b) 1995

(c) 2005

Figure 4: Classification results for the three epochs
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Figure 5 shows the various proportions allocated to each of the classes for the three 
epochs considered. In this figure, hardwood plantation and softwood plantation classes 
have been merged into one plantation class. GIS provided functionalities for generation 
of thematic maps as products of and cover analysis. GIS enabled map overlays where 
different themes can be overlaid with other data e.g. socio-economic data to get certain 
information.

   
Figure 5: Proportionate land covers in the forest for each of the 3 epochs

The spatial distribution of human induced classes namely agriculture, plantations and 
built up areas depict a clear relation between population density, accessibility and forest 
interference. The classes are situated along accessible areas within the forest along 
forest roads and on the forest edge. The classes are also pronounced on the Western and 
Southern parts adjacent to densely populated locations and with good road network. 
On the eastern part, there is little forest interference since it is shielded by the steep 
terrain of the Nandi escarpment that harbour lower population.
	 Land cover trends obtained from the images indicate that there was enormous 
destruction of Kakamega Forest over the period between 1986 and 1995, but the forest 
recovered substantially over the period between 1995 and 2005. Increased agricultural 
activities were registered during this period, and increased agriculture implies 
deforestation. Over the period 1995 - 2005, there was a general recovery of the forest 
as evidenced by reduced agricultural activities and increased forest plantations.
	 To analyse and assess the quality of the classification steps, error matrices were 
generated based on maximum likelihood classifier for each of the three epochs. In this 
part, the seven original classes are considered (i.e. , prior to merging of the plantation 
classes). Statistics generated included overall accuracy, producer’s accuracy, user’s 
accuracy and Khat statistic. These results are tabulated below in tables 4 - 6.

Table 4: Classification error matrix for 1986 imagery
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Grassland	 Natural	 Agriculture	 Hardwood 	 Softwood	 Built-up	 Tea	 Row    	 User  accu
                                		  forest                                                                       				  
 area         	 zones    	 total     	 racy   (%)                   
                               	                                                                                                              
Grassland          	 206    	 0	 0 	 0	 0	 3	 0	 209 	 98.6
Natural forest       0                  	792              	 4                   	0                   2            	0            	 0         	 798         	
99.3
Agriculture            	  0                    	 0                	435                  	 1                   1              	 9            	 0        	
446          	 97.5
Hardwood              	  0                     	 0                  	 1                 	133              4              	 0           	 1         	
139         	 95.7
Softwood               	  0                   	 29                 	 0                 	3                	 206          	 0             	0         	
238        	 86.6 
Built-up areas       	  10                  	 0                 	 14                	 0              	 0             	223         	
0        	 247      	 90.3
Tea zones               0                     	 0                  	 0                 	 0               	 0           	 0            	 201      	 201       	
100
Column total         	 216                   	 821               	 454              	 137               	213          	
235        	 202     	 2278
 Producer acc 	 95.4                  96.5              	 95.8              	 97.1            	96.7        	 94.9       	 99.5    

    								        Overall Accuracy=96.40%                                                

Table 5: Classification error matrix for 1995 imagery

  	 Grassland	 Natural	 Agriculture	 Hardwood	 Softwood	 Built-up	 Tea  	 Row	 User  accu
                                                    		   forest                                                                       			 
	  area         	 zones   	  total     	 racy   (%) 
  
 Natural forest 	 1549 	 0	 3	 8	 0	 0	 0	 1560	 99.3
  Grassland      	 0	 160	 0	 1	 0             	 0              	 64          	 225          	71.1
  Built-up area	 7                    	 0                	 203                 0                   	 0             	0                	 0           	
210           96.7
Softwood	 1                    	 0                	 0                  	 249                	 0               	 0               	
4           	 254          	 98.0
 Hardwood       	 0                     	 0                	 0                    	0                   	 45             	 1                 	
0          	 46            	 97.8
  Tea zones     	 0                    	 0                	 0                   	 21                  	 1              	14              	 2          	
38            	 36.8
Agriculture     	 0                   	 25               	 0                   	 86                  	 0              	0                	 250       	
361           	 69.3
 Column total	 1557               185           	 206               	 365                  	 46           	15               	 320       	
2694
  Producer	 99.5                86.5          	 98.5               	 68.2                	 97.8        	93.3            	
78.1 
ac uracy (%)
  							     
							       Overall Accuracy=91.69%

      

Table 6. Classification error matrix for 2005 imagery

 	 Natural     Grassland	 Softwood	 Hardwood 	 Tea 	 Built-up	 Agriculture	 Row       	 User  accu
                                   forest                                                                    				    zones     	 area               	
	 Total        	 racy (%)

 Natural forest	 1224	 0	 0	 0	 0	 3	 0	 1227	 99.8
Grassland	 0                 	49	 2	 0 	 0 	 0 	 0	 51	  96.1 
Grassland             	0                 	49               	 2                 	0                  	 0          	 0                	 0           	 51              	
 96.1
Hardwood    	 0                 	0                  	 2                  	 0                 	104       	 0                	 0           	 106             	
98.1 
Built-up areas       2               	 0                   	 0                  	 0                   	 0         	 116             0           	
118              	 98.3
Agriculture 	 0                 	0                  	 3                  	 0                  	 0         	 0              	 543        	
546             	 99.5
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After the merging of the plantation classes, statistics were calculated using standard 
GIS cross tabulation functions. These statistics show changes in area of individual 
cover types between the two epochs of interpretations. These results are shown  in 
Table 7.

Table 7: 	 Land cover in the three different years derived from the analysis of 		
the satellite images

Year                        1986                                1995                               2005

Cover type	  Area (Ha	  %	 Area (Ha)	  %	 Area (Ha)	  %  
Natural forest	 16558.2	 66	 9000.6	 36	 7223.6	 28
 Agriculture	 1235.9	 5	 6035.5	 24        	 2136.9 	 8.6
Built-up areas	18.6   	 0.1            	 22.3                	  0.1        	 30.5                 0.1
Plantation	 4562.3	 18            	 7886.5             	31.5      	 12985.9 	 50
Tea zones	 723.8	 2.9            	  986.7	 3.9        	 2235.6	 8.8

TOTAL	 24995.1	 100            	25037.8         	 100      	 25468.8          	
100

Actual change can be obtained by a direct comparison between validated classification 
results of the image series from epoch to epoch. Land cover/use changes that occurred 
during the period under consideration were measured by computing change matrices. 
Land cover change detection is necessary for updating land cover maps and the 
management of natural resources (Brandt et al. 2002, Lunetta et al. 2004). The change is 
usually detected by comparison between two multi-date images, or sometimes between 
an old map and an updated remote sensing image. Change detection is obtained in 
remote sensing through operations which allow for subtraction of two images with the 
final result being an image which can further be vectorized capturing the changes.
	 Tables 8 and 9 show the inter-conversion between the various land cover types 
over the periods 1986 - 1995 and 1995 - 2005. Columns represent the later epoch’s 
data while rows represent the earlier epoch’s data. These values indicate the areas that 
were previously and the cover that is represented in the row that now been converted 
to the cover represented in the column.

Table 8. Change matrix for 1986-1995

Year				    1995

		  Natural forest	 Agriculture	 Plantation	 Build-up	 Grassland	 Tea zones
					     areas

	 Natural forest	 12370.9	 1644.4	 2803	 2.5	 860.5	 968.3
	 Agriculture	 148.2	 1486.3	 60.8	 0	 0	 42.2	
1986	 Plantation	 192.5	 748.2	 1900.9	 0	 58.3	 420.2	
	 Build-up areas	 7.4	 0	 0	 10.2	 0	 0
	 Grassland	 452.3	 125.2	 0	 6.2	 923.1	 3.7
	 Tea zones	 153.8	 280.9	 122.8	 1.2	 36.2	 485.3	
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Table 9: Change matrix for 1995-2005

Year				    2005

		  Natural forest	 Agriculture	 Plantation	 Build-up	 Grassland	 Tea zones
					     areas

	 Natural forest	 11548.2	 222.2	 236.8	 6.2	 125.2	 311.1
	 Agriculture	 331.1	 2484.9	 1119.7	 0	 95.5	 274.1	
1995	 Plantation	 5.5	 520.3	 1501.6	 0	 2.5	 5.8
	 Build-up areas	 2.5	 9.8	 0	 6.2	 0	 0
	 Grassland	 766.2	 99.6	 86.8	 0	 885.3	 0

	 Tea zones	 120.5	 590.3	 853.1	 1.2	 1.2	 275.3

Figure 6 captures the trends for each land cover over the 3 epochs. It can be 
seen that the natural forest cover has continually reduced, though the largest 
reduction occurred between 1986 and 1995. 

   
Figure 6: Kakamega land cover trends
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Artificial efforts of reforestation can also be noted with large increases in areas under 
plantations. It can also be seen that area cleared for agriculture increased between 
1986 and 1986 but some of these lands were converted back to plantations between 
1995 and 2005.

4.0	 CONCLUSION
From the results obtained, it has been shown that Kakamega Forest was enormously 
deforested between 1986 and 1995, but there was significant recovery over the 
period between 1995 and 2005. This trend can be attributed to the work done through 
several projects initiated in the region to enhance forest conservation in line with 
Government’s policy of poverty reduction as well as empowerment of the local people 
through community participatory approach. Such project include: community based 
cultivation of medicinal plants, promotion of environmental protection, energy saving 
technologies, promotion of ecotourism, development of apiculture and sericulture 
among others.
	 This research has confirmed the utility of remote sensing and GIS in mapping 
and highlighting worrying trends and quantifying these trends in land cover changes. 
It has also demonstrated that they can be used to assess the impact of any remedial 
measures taken to avert negative changes as evidenced by the increased forest cover 
registered between 1995 and 2005 through increase in forest plantations.
	 Due to the activities going on in Kakamega Forest, it is recommended that 
the time duration between monitoring epoch might be reduced to at least biennial or 
triennial basis so that any change can be documented and the necessary corrective 
steps taken towards the right direction to avert further negative effects.
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