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ABSTRACT

This paper looks into the geometry of an n-dimensional anti-invariant maximal
spacelike submanifold M immersed in an indefinite complex space form

M(c),c#0 . Let M be an n-dimensional compact anti-invariant maximal spacelike

\ 7 n+p
submanifold of M, (€),c # O. Then we show that either M is totally geodesic or

S:(n+1)(n+2p)c S>(n+1)(n+2p)c
4(2n+4p—1) 4(2n+4p—1) .

or at some point of M,
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1.0 INTRODUCTION

Among all submanifolds of a Kaehler manifold, there are two classes the class of anti-
invariant submanifolds and that of holomorphic submanifolds. A submanifold of a
Kaehler manifold is called an anti-invariant (resp. holomorphic) if each tangent space
of the submanifold is mapped into the normal space (resp. itself) by the almost complex
structure of the Kaehler manifold (Chen et al., 1974). A Kaehler manifold of constant

holomorphic sectional curvature is called a complex space form. Let M(e),c#0
be an indefinite complex space form of holomorphic sectional curvature ¢, complex

dimension (n+p), 7 #0 and index 2p. Let M be an n-dimensional anti-invariant
maximal spacelike submanifold isometrically immersed in . We call M a spacelike
submanifold if the induced metric on M from that of the ambient space is positive
definite. Let J be the almost complex structure of . An n-dimensional Riemannian
manifold M isometrically immersed in is called an anti-invariant submanifold of
if each tangent space of M is mapped into the normal space by the almost complex
structure J. Let h be the second fundamental form of M in and denote by S the square
of the length of the second fundamental form h.

Our main result is:

Theorem.
LetM be ann-dimensional compact anti-invariant maximal spacelike submanifold
3 (n+1)(n+2p)
\ 1+ D - _
of Mf" (€),c#0 . Then either M is totally geodesic or 4 (2n +4p 1) or at
3 (n+l)(n+2p)
~ 4(n+4p-1)

some point of M,

2.0 LOCAL FORMULAE
We choose a local field of orthonormal frames;

{el,...,en;em,...,e“p;el* =Je,...,e, = Jen;e(m)* = Jen+1,...,e(ﬂ+p)* =Je,,, §

. M"™(c . €)yner
in" 7 () such that restricted to M, the vectors { P ”} are tangent to M

M Z“’ (©)

and the rest are normal to M. With respect to this frame field of , let

1 n, .+l n+p ., ., 01* n*, (n+l)* (n+p)*
Wi WHEWE s WEESWE s WESWE 5 s W e the field of dual frames.

Unless otherwise stated, we shall make use of the following convention on the ranges

of indices: 1<A,B,C,D<n+p; 1<i,j,k,l,m<n; n+1£a,b,c§n+p;and

when a letter appears in any term as a subscript and a superscript, it is understood that
this letter is summed over its range. Besides

€, :g(ei’ei):g(‘]ei"]ei):l when ISiSn}
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ea:g(ea’ea)zg(']eu”]ea)z_l n+l£a£n+p‘

n+ P
c),c#0
Then the structure equatlons of ( ) are;

— _ — o J
aw’ +Xe,w; AW’ =0 WB +WA—0,WJ-—WJ-* W, =W,

2 2

A A C
dwy +Y_eWi AWy = Ze e, R W Aw”
C

— C
R;CD = ZeceD (dACdBD _dADdBC + JAC‘]BD - JAD‘]BC + 2‘]ABJCD)

-, —
where Rycp denote the components of the curvature tensor R on. Restricting these
forms to M we have;

w’ = E h'w' : ‘ .
a _ i ij 9 a _ pa i _ i J
w’ =0, - hii hﬁ dw ij AW

b b

) . 1 .
W, +w/ —0 dw; :_ZW;( AW +E;R;ka AW,
. =Ry Z(h K —hiht ) dw =—Zw AW,

=—wa AW, +— R”W AW,

bij
by Z (hzk hg h/g h/fz )

\ g n+p
From the condition on the dimensions of M and MP (), it follows that

is a frame for ( ) . Noticing this, we see that

(d,kdj, dd, )- Z(h,k —~hhs,)

(2.2)

2
303 s-36)
We call ant the mean curvature of M and ja he
square of the length of the second fundamental form. If H is identically zero, then
M is said to be maximal. M is totally geodesic if h = 0.

L R, .
From (2.2), we have the Ricci tensor 7/ given by
Z ik — Cdu + Z hiih/;
ak

Thus the Ricci curvature R is;
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R:H:%@—U+S

.................................................................................. (2.4)
From (2.3) the scalar curvature s given by
. n(n-1

r=> R _n(n=1) )c+S

- 4

ettt (2.5)
Let "7 denote the covariant derivative of 7 . Then we define ~ /¢ by

a .,k a a, .k ay .k b, ,,a
D haWE =dhl D hwS Y hwt + > hwg
k k k s (2.6)

a a

and Uk T Taking the exterior derivative of (2.6) we define the second covariant
derivative of ; by
D W' =dhi D W D W+ hiwg + D wy
] 7 ] ] b
(2.7)  Using (2.7), we obtain the Ricci formula;

a a _ a pm a pm b pa
hijkl - hijlk - Z hijikl + z himR ki + Z hij Rbkl
m m b

The Laplacian of the second fundamental form is defined as

Therefore,
a c a apb pb apb b a b 7b
Ak =nH; + Z(n +1)> b - [;hmihmkhkj + ; he.hb By, — ;hkmhwhik
o+ 2 i+ > b B =D b,
bmk . bmk . bmk i
(2.9)

H. . . .
where ~ 7 is the second covariant derivative of H.

M
For M maximal in 7 (c) , (2.9) becomes,

S AR WIE WA AR WA R WA

bmk bmk bmk
bypa 1b bypa 1b
+ Z hkihjmhmk - Z hkihmkhmj
bmk bmk

(2.10)
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AT ) =3 (1) + Sy

From aij aifk ‘”f we obtain,
_AZ( )2=Zk:(yk)+ (n-i—l)Z( ) Zk:lhyh s
aij aij abij
+ 3 (kb Wiy, ~ b )
B oo @2.11)

For each a let H, denote the symmetric matrix ( v ) Then (2.11) can be written as

AT ) =X (1) + S0 )T () - X, 1, Y

aij aijk aij
+> tr(H,H,~H,H,Y
ab

where tril H, denotes the trace of the matrix H”H".

In the sequel, we need the following lemma proved in (Chern et al., 1970) by S. S.
Chern, M. do Carmo and S. Kobayashi.
Lemma 2.1:

2 P2
Let A and B be symmetric nxn-matrices. Then, ¥ (B -8 )2 <2Trd'TrB
and equality holds for non-zero matrices A and B if and only if A and B can be

transformed by an orthogonal matrix simultaneously into scalar multiples of 4 and

B respectively, where

Moreover, if A Ay, 4, are three symmetric nxn-matrices such that

~F (4,4, - 4,4, Y =2TrATrd}, 1<a,b<3, a%b

> then at least one of the
matrices A, must be zero.

- Z iy (S.,)
Let abij . Then (n+2p)x(n+2p)-matrix * “°/ is symmetric and

. . . € . 1ssC . .
can be assumed to be diagonal for a suitable choice of *!”""” 7" Setting

S =8 =trH’ §=2.5,

@ and a , equation (2.12) reduces to
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—AS Z(hvk) +§(l’l+1)S-Z(ll"HaHb)2 +>or(H,H,~H,H,)
ab ab

aijk

(2.13) On the other hand, using Lemma 2.1 we have,

oSS, H, Y + T (HH, ~H,H,Y 2 (1415 - .82 -235,5,
=((1—2n—4p)S+%(n+1)J5+ 3 (5,-5,)

n+2p (n+2p)a>,,

(2.14)
which, together with (2.13), implies that

—AS>Z( .) +[wS+%(n+l)JS

g n+2p

3.0 PROOF OF THEOREM
Let M be an n-dimensional anti-invariant maximal spacelike submanifold sometrically

]\7””’ (¢),c#0

immersedin .Now assuming that M is compact and orientable, we have the

0<[Y () =] 3 han 1

integral formula M aijk M ay , where *1 is the volume element
2n+4p-1
> (k) ——AS Crrdp=l)g_c,ils
n+2p 4

of M. From (2.15) we see that “/*
By a well known theorem of E. Hopf [3], AS =0 and thus we have

0< J-[(Zn+4p D 4( +1)js*1

n+2p

M s (3.1)
(n + 1)(n +2 p)
Assume 4(2n ta4p- 1) everywhere on M. Then (3.1) implies that the
second fundamental form of M is parallel and hence S is constant. Therefore, S =
(n + 1)(n +2 p)

0 and M is totally geodesic or 4 (2n t4p- 1) . Except for these two cases,

(n + 1)(n +2 p)

4 (2n +4p— 1)

at some point of M.
As an immediate consequence of this result we get;

Corollary 3.1
Let M be an n-dimensional compact anti-invariant maximal spacelike submanifold
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iy
of Mp (ele=0

geodesic.

. If the second fundamental form of M is parallel then M is totally

4.0 CONCLUSION

In this paper, we studied the geometry of an n-dimensional anti-invariant maximal
spacelike submanifold M immersed in an indefinite complex space form by computing
the square of the length of the second fundamental form. In conclusion, we find

_ (n+l)(n+2p)
d(2n+dp -1

that either M is totally geodesic or
(n4+1){n+2p)

4 (2:*1 + 4P - 1} . Moreover, if the second fundamental form of the submanifold
is parallel then the submanifold is totally geodesic.

or at some point of M,
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