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Abstract

Statistically, change point is the location or the time point such that observations
follow one distribution up to the point and then another afterwards. Change point
problems are encountered in our daily life and in disciplines such as economics,
finance, medicine, geology among others. In this paper, the power of the likelihood
ratio tests for a change point in binomial observations whose mean is dependent
on explanatory variables is investigated. Artificial neural network technique is used
to estimate the conditional means. These estimates are compared with ones
obtained using the generalized link functions.

It is shown through simulation that the power of the test increases as the size of
sample. The test is found to have less power when the change point is near the
edges than when the change point is at the centre. The test is also more likely to
detect a change if the magnitude of the change is large. In all the instances, the
neural network method is found to perform better than the parametric method.

Keywords: change point, likelihood ratio test, binomial distribution, power of a test,
artificial neural-network

105



Change point in binomial distribution JAGST Vol. 16(3) 2014

Introduction
We consider a situation where a sequence of independent binomial variables is
subject to a change in distribution after an unknown point. Formally, we can

describe this situation as follows: - My5eee My are independent binomial random

variables, such that, for a value k, I<k<b , m; are distributed as

{B(ni,pi) 1<i<k

B(n,, p) k+1<i<b 1)

’
where P (X) and pi(X)are the success probabilities that depend on the

. D
X= (X500 Xp) € R . Here the assumption made is that

explanatory variables
there is a single change point at the point k.
Previous work, with this type of model, has been directed towards
(i) Estimating the change-point, k
(i) Testing the hypothesis that no change in distribution has occurred.
Most analytical approaches, developed for dealing with binomial change-point data,

/
assume the parameters P (X) and pi (X) like k, to be unknown. The assumption
in most approaches is that the conditional probabilities do not depend on
explanatory variables. Particular attention has also been devoted to the case of the

m; being zero-one variables i.e. with N - 1foralli,

Worsley (1983) studied the power of the likelihood ratio and cumulative sum tests
for the binomial model. He found the exact null and alternative distributions of
likelihood ratio, cumulative sum and related statistics for testing for a change in
probability of a sequence of independent binomial random variables.

Waititu (2008) investigated power of likelihood test for change in the bernoulli
model and used the artificial neural networks to estimate the conditional means. In
his work the conditional means of the Bernoulli random variables are assumed to
depend on explanatory variables. In this work artificial neural networks and
parametric methods are used to estimate the conditional probabilities and the
power of likelihood ratio

test of a change point is investigated. The results of the two methods are then
compared.

The paper is presented as follows. We define the model in section 2. Artificial neural
networks are used to estimate the binomial probabilities. In Section 3 the hypothesis
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testing problem is discussed. In Section 4 we show that the test is consistent. In
Section 5, simulated data is used to investigate the power of the

test for the change point at various locations within the data and the effect of the
size of change on the power of the test is also investigated. In section 6 we give an
application to real data where we compare

the estimates of conditional means obtained through the use of the generalized link
function and those obtained through the neural network.

2 The Model
The observations mi are independently distributed binomial random variables
whose probability distributions may be denoted as

f(m. p ()=, C,, [pO]" 1= pi 0™ o

As the functional form of Pi (%) is not known one may use a parametric method

and the logistic regression to estimate pi(X). Here we obtain as in Chao-Ying and
Gary (2002)

1
d
1+exp{-~(B, +Zﬁi X))}

P (x)=

(3)

An alternative would be the use of non-parametric method where the output of a
single hidden-layer feedforward neural network with H >1hidden nodes and a

single output node is used to approximate pi(X). The output of the network may

be presented as
P(x,0) =y (£(X,0))

H D
£(x,0)=a, + Z%{Who + ) Wig X }
h=0 d=l1 (4)

0eQ=w,,a, h=0L-,H j=0l--D)

where is the vector of

network weights

and ¥ is the activation function of the network. The unipolar function is used as its
outputisin the range [0, 1] making it appropriate in estimating probabilities. The set

Q is compact to ensure it is bounded and closed.
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The network is trained so that the error function

1Q n,
|(¢9)=—B§ I+ m Ing(x0)+ (0 =m (1= Ing(x,0)

(5)

is minimized. The average of this error function is

|0(9)=—E{ b { ln(ni J+m‘ Ing(x,0) + (n, —m. )(1 - Inp(x, ) } }

m.

o|—-

b n
:—E{ Z{ In ml}ml Ing(x,,0)+(n, —m,)(1-Ing(x,,0)) } }

i=l 1

=-E i In i +0,p(x) Ing(x,,0) + (n; —n, p(x,))(1 - Ine(x,, 0))
i1 N, p(x,)

Assuming that 1,(0) has a unique minimum in GEQ, then this minimum is
characterized by

p(Xl) _ 1- p(Xl)
¢(X179) 1_¢(X1’0)
=0 (6)

V1,0) = 1,(0)

VI (0) = —HIE{ }V(D(Xp@)

where
Here the fact that the neural network output function is continuous in X and 0 and

is continuously differentiable with respect to 0 makes it possible to interchange
expectation and differentiation.

— 4 ’
If the model is correctly specified then p(X) _w(x’e)for some 0" €Q  then

equation (6) is solved but in a general situation is 0’ defined as

0' =arg min l,(0) )
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A

An estimator & of & is the value € that minimizes the error function in equation
(5). & is consistent if @ >0 a5 b —
In the context of classical regression models, our model may be expressed as

m; =n; p(X;) —&; (8)

1
(m X) P(mi|xi):n_E(mi|Xi)
As the observations * i’ "1/ are independent and i then
we have that E(&)=0 and

The consistency and asymptotic normality of network parameter estimates may be
inferred from Franke and Neumann (2000).

var(s;) =0’ <o

3.0 Testing for the change point
The change point hypothesis problem will be stated as

Ho : Pi(X) = py(X) 1<i<b
Against
H, : pi(X) = Py(X)

p;(X) = p'(X)

for some 1<K —and for some 1>k,

(x) = p'(x)

where 2 <K <b—1 s the unknown change point location and Po
The general likelihood function is of the form

b .
L(m, X, p) = H(& J[ P, CO1™ 1= p, ()" ™

(9)

Thus if K is not fixed and its location is unknown then Hy is rejected if and only if
= —2logA, >

Q, = max —2logA, 2 C (10)

where Ay is the ratio of the likelihoods of the sample after and before the change.

The critical values, C forthe corresponding sample size b and level of significance
of the test are computed using Theorems 2.1 and 3.1 in Gombay and Horvath (1996).
These values are presented in the Appendix.

4.0 Power of the test

A oL@y
Q, = max —2logA, k L(Ql) QO

The likelihood ratio statistic is I<k<b-1 where

contains, the Oy maximum likelihood estimate of ¢ under the null hypothesis while
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™ A A

1 contains ek’ek“ the maximum likelihood estimate of & under the alternative

hypothesis before and after the change point respectively. Q is also an increasing

1
max —

. I<k<b-1 A .. . . Q .
function of k and therefore the null hypothesis is rejected if <P is large,
i.e. reject Ho if Q,>C where C is some bound that depends on the size & of
the test and the size P of the sample.

If P(m; [ %) is the conditional probability of m; =m given that X =X provided
that @ is the true parameter then,
A —ﬁ Péo(mi|xi) b P@Q(mi|xi)
=
i=1 Pék (M %) iz Pé*k (m; [ %;) (11)

Where Oy €€ and Oc: 0 €Q,

This conditional probability may be estimated using a parametric method or a non-
parametric method.

A commonly used parametric method is the generalized link function model. We
propose the use of the neural network, a non-parametric method and compare the
results of the two methods.

From Theorem 2.1 of Gombay and Horvath (1996) it is observed that C grows

asymptotically as b and for a given X depending on the size of the test so that,

_ (x+ f(logh))®
a’(logb)
~ 2logh (12)
To argue that this test is consistent, we show that for a given size & its power
converges to 1.

If there is change, then it occurs at a certain point in the data. Thus for a change
pointk, 2<k<b-1 apd ash— ®©  then we have thatk,b_k —> 0,

Q,

Kk

—=1€(0,])

b

Let 0,0, be the parameter values before and after the change point respectively

and O denote the parameter value under the null hypothesis.
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Since the estimator 0 is consistent then as b— o0

0,06, 6, -0 0. —F,
So that asymptotically by the law of large numbers

1 Pgo (m; [ %) Pgo (m; [ %)

—logA, g —————+(1-9)E, ————
b “P.(m. | X % P.(m |X
gk( || |) gk( || |) (13)
Under the alternative hypothesis then 0 #8, and 6 # 0, , 0, 0,

by the definition ofgo. In a correctly specified model and assuming that Ois
identifiable (see Hwang and Ding (1997) for assumptions in identifiability) then,

Pgo + P6’, and P6’o * Pa,*

From Jensen's inequality and the fact that logarithm is a strictly concave function we
have that

P, (m | %) P, (m; [ %)

6o o< 1gE9—

P, (M%) P, (M [ X,)
P, (M| X,

=log[[ A——r b m |X) P, (M, | x)dv()du(x)

=log [[ P, (m, | x)dv(x)du(x)

=0
Similar results are obtained for the last term of equation (13). Hence for some
constant” ~ 0,
! log A %
-~ Kk ¥~ ~—
b . Thus log A, b;/. The size of type Il error which depends on

the power of the test under the alternative vanishes since

P(max (A,)"' <C|H,)<P(A,)"'<C|H,)—>0

1<k<b-1 as b —> w
(14)
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-1
as (Ak) changes as eXp(bj/)and C changes only as b . Thus the asymptotic
power of the test is unity.

5.0 Simulation Studies
The power of a change point test for finite sample size for specific alternatives of

one change point was investigated.
0.5
The null hypothesis was rejected if the test statistic was large i.e. <P where

C isthe asymptotic critical value which depends on the size of the test & and the

size P of the sample is obtained using either Theorem 2.1 or 3.1 in Gombay and
Horvath (1996).

For a given level & the power of the test for a specific alternative is the probability
of accepting this alternative correctly which is given by

xk(a)=P@Q,° >C|H,) (15)

0.5
Since the distribution of Qb under Ha is not known simulations were used to

estimate the power of the test as follows:-
05
For a sample sizeD , B replicates were made and in each replicate <P

was estimated. Then the power at & was estimated as

1+n0(Q,” > Cy(@))

k()=
1+B (16)

05
. . >
is the number of times <P Co (a).

(M | X=xX)=0,+LBX. +[B,X,.
Our model was assumed to be of the form Pi(M; [Xi=X) = f + X, + s 2'and
using the logistic regression as in equation (3) we have that

P(mi | X :Xi):

n0(Q)" > C, (@)

where

1
1+exp— (B, + B X + B, %)

(17)

For simulation purposes, we assumed that H, is true and used the following model

(1+exp(—(=1.5+ X,; + X, )" 1<i<k
P(m; | X =X;)= .
(1+exp(—(=1.5+2x,; +1.8%,,)))" k+1<i<b
(18)
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where we arbitrarily picked the values of ﬂo, ﬂl and ﬂ2 as -1.5, 1 and 1 for
1<i<k similarly
'80, B and b, as-1.5,2and 1.8 fork +1<i<b,

X

_ X. . n.
For a sample of sizeD =200 , W and "% were generated as Uniform [0, 1]. = 'the

+th
sizeof the I group was generated as the whole part of Uniform [2, b]. The location
of the change point K was placed at 20, 40, 50,100,150,160 and 180. Then the

binomial random variable m; was generated in line with equation (18). 500

simulations were done at each of the change point location. The value of the test
0.5

statistic <P in each of the 500 simulations was computed first using estimates of
parameters from a generalized link function and then using a neural network. Using
the critical values C1 and C2which were generated using Theorem 2.1 or 3.1 in
Gombay and Horvath (1996) the power of the test was estimated using equation
(16). The results are presented in Tables 1 and 2 respectively. A plot of the power

of the test against the location of change point at & = 0.01s presented in Figure 1.

b b 3b

The change point K was then put at4, 2 and 4 for the samples sizes

50,100,150,200 and 500. For each sample, the power of the test at each change
point location was evaluated. 500 simulations were done to determine each

estimate and critical values C1 were used. The results are presented in Tables 3, 4
and 5.

A plot of the power of the test against the size of the sample at & =0.01js
presented in Figure 2.
500 further simulations were carried out to investigate the power of the test for a

sample size of 200 in relation to the size of the change, denoted as A where,

2 *
N=0-0"| (19)
and change point location. To compute the power of the test we used the critical
values, Cl The results are presented in the Table 6. A plot of the power of the test

against the location of the change point at & = 0.01or the changes of size 1.2, 1.5
and 1.8 is presented in Figure 3.

6.0 Results and Discussions
Results in Table 1 and Table 2 show that the power of the test is less when the

change point is located near the edges of the data. For each value of & = 0.01¢he
upper row shows the power when the parameters were estimated using a
parametric method while in the lower row the parameters were estimated using a
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neural network. The differences in the power as indicated in Figure 1 could be due

to the fact that the critical values Cl are in a squared Gumbel distribution, an
extreme value distribution with a slow rate of convergence as noted in Gombay and
Horvath (1996). The values in the Figure 1(b) were estimated using a parametric
method while the values in the Figure 1(a) were estimated using a neural network.

When the change point is located in the upper edges, the test has more power
compared with the power at the lower edges. The test has more power when the
change location is at the centre of the data i.e. the test will most probably detect a
change when the change point is at the centre. This is due to the comparison of an

estimate calculated using a relatively small number of observation, the first K and

an estimate calculated in a large number of observations, the last b -k
observations. This is as noted by Jaruskova (1997). Table3 and Table 4 indicate that
an increase in the sample size increases the power of the test, as expected.

As Figure 2 shows the loss of power is more due to the size of the sample rather
than the location of the change point. This is of importance since it would be
desirable to detect a change once it occurs. The values in Figure 2(a) were evaluated
when the conditional probabilities were estimated using a parametric method while
those in Figure 2(b) the probabilities were estimated using a neural network.

Figure 3 shows that as the size of the change increases the more the chance of
detecting it. The values in

Figure 3(a) were evaluated when the conditional probabilities were estimated using
a parametric method while those in Figure 3(b) the probabilities were estimated
using a neural. Itis noted that in all the instances the neural network performs better
than the parametric method.

Table 1: Power of the likelihood ratio test from a sample size b =200 = g9 using

critical values C1

K(a)
Change point location

20 40 50 100 150 160 180
o
0.01 0.003992 0.4411 0.9901 1 0.9901 0.8705 0.03237

0.0099 0.5941 1 1 1 1 0.9661
0.05 0.8323 1 1 1 1 1 0.9661
0.10 1 1 1 1 1 1 1
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Table 2: Power of the likelihood ratio test from a sample size b =200 = gp
using critical values C2

k(@)
Change point location
20 40 50 100 150 160 180
a
0.01 0.05389 0.9980 1 1 1 1 0.3094
0.0791 1 1 1 1 1 0.5049
0.05 0.8762 1 1 1 1 1 0.9741
0.10 1 1 1 1 1 1 1
(@) ®)
g (=] g L]
3 - S A
50 100 150 50 100 150
location of change point location of change point
“~ o
----- G2

Figure 1: A plot of the power of the test against the location of
change point.
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b
Table 3: Power of the likelihood ratio test when the change point is at 4
K(a)
14 Sample size
50 100 150 200 500
0.01 0.005988024 0.001996008 0.005988024 0.9121756 1
0.008594 0.009102 0.015620 1 1
0.05 0.001996008 0.02794411 0.998004 1 1
0.10 0.01596806 0.7325349 1 1 1
b
Table 4: Power of the likelihood ratio test when the change point is at 2
k(@)
a Sample size
50 100 150 200 500
0.01 0.003992016 0.001996008 0.0259481 0.9780439 1
0.0023297 0.026902 0.039186 1 1
0.05 0.003992016 0.0998004 1 1 1
0.10 0.02794411 0.8742515 1 1
3b
Table 5: Power of the likelihood ratio test when the change point is at 4
K(a)
o Sample size
50 100 150 200 500
0.01 0.001996008 1 0.001996008 0.003992016 0.1836327 1
0.002583 0.0027153 0.039142 1 1
0.05 0.001996008 0.3812375 1 1 1
0.10 0.06586826 0.998004
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Figure 2: A plot of the power of the test against the size of the sample at
a=0.01
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Figure 3: A plot of the power of the test against the location of the change point at
a=0.01 for the changes of size 1.2, 1.5 and

1.8.
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Table 6: Power of the likelihood ratio test for different sizes of change

and change point locations k.

K(a) under C1

Size of change

k a A=1.2 A=1.5 A=1.8
20 0.01  0.003992016 0.001996008 0.003992
0.00487432 0.00219754 0.00538710
0.05 0.06387226 0.4530938 0.8323
0.10 0.8023952 1 1
0.01  0.003992016 0.05588822 0.4411
40 0.00473981 0.06429013 0.53961
0.05 0.8163673 1 1
010 1 1 1
50 0.01 0.007984032 0.2315369 0.9142
0.00842108 0.3154287 0.99412764
0.05  0.9520958 1 1
010 1 1 1
100 0.01 0.1197605 0.9121756 1
0.251964 0.9458210 1
005 1 1 1
010 1 1 1
0.01 0.01796407 0.3313373 0.9800
150 0.027210945 0.59430631 1
0.05 0.9820359 1 1
0.10 1 1 1
160 0.01 0.003992016 0.1157685 0.7625
0.00492373 0.3154287 0.8764
0.05 0.8582834 1 1
010 1 1 1
0.01  0.001996008 0.003992016 0.02994
180 0.00284714 0.00572859 0.0529173
0.05 0.1077844 0.499002 0.9661
0.10 0.8622754 1 1
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7.0 Application to real data

To demonstrate the use of artificial neural networks in the estimation of the
conditional means we used the Bliss (1935) beetles data, where batches of adult
beetles were exposed to gaseous carbon disulphide for five hours. This data has
been extensively used by statisticians in studies of generalized link functions e.g.,
Prentice and Ross (1976), Stukel (1988) and is used by Spiegelhalter et al. (1996) to
demonstrate how BUGS handles generalized linear models for binomial data. The
data is given below.

Table 7: Beetles Data
Dosage (CS2mg/litre)

No. of beetles No. of beetles killed

49.057 59 6

52.991 60 13
56.911 62 18
60.842 56 28
64.759 63 52
68.691 59 53
72.611 62 61
76.542 60 60

p(Mm (X=X =4 +6X,;

Here we assumed that where mi is the number of

Li

deaths due to the i" dose and is the respective dose. Then as in equations (3)

P(m| X

and (17), the values of (m | 1) may be estimated. The dosage at which 50% of
the beetles are killed is called the LD50. One may be interested in the determination
of this dosage since it indicates a significant change in the structure of the

probability of death. From the data the fourth dosage of 60.842 CS, mg /litre i
50% of the beetles. This shows that there might be a change in the functional
structure of probability at the fourth dosage.

We also compared the estimates of conditional means obtained through the
parametric method using a generalized linear fit and those obtained using the neural
network. The results are presented in Table 8.

A graph of the estimated probabilities against the dose is given in Figure 4. It is
evident from this graph that the estimates obtained using neural networks are
nearer the actual values than those obtained through the generalized link function.
The probability of death LD50 is approximately 0.5. A horizontal line through this
point indicates that the fourth dosage is the LD50 and that the neural network
method estimate is nearer the actual dosage than the generalized link function
method estimate.
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Taking the estimated probabilities from the data as the actual probabilities we
computed the mean square.
Table 8: Estimated probabilities of death

m Estimates fitted using glm Estimates fitted using nnet

Actual probabilities= n

0.1016949 0.7011985 0.1189710
0.16732799 0.1801028

0.216667 0.34796279 0.3027226
0.58696004 0.5230217

0.2903226 0.79040075 0.7834121
0.90945597 0.9394865

0.500000 0.96386496 0.987661
0.98611696 0.9977424

0.8253968

0.8983051

0.9838710

1.00000

r

§ ; /

g o /

g s 7

,"/I/
o 7| .//’,
50 55 60 65 70 75
____actual probabilities dose
...... glm fitted

....... nnet fitted

Figure 4: A plot of the estimated probabilities of death against dosage
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error. The generalized link function method had an m.s.e. of 0.002032222 while the
neural network estimates had an m.s.e. of 0.0007246531. Thus in terms of m.s.e.
the neural network estimates are better than the generalized link function method
estimates.

We wanted to determine whether our test would be able to detect the dosage at
which 50% of the beetles are killed. In line with Gombay and Horvath (1996) we

generated the critical values Cl and C2, using a sample size as 481 which are
presented in the Appendix. The graph in Figure 5 gives us a value test statistic of
15.44, which is the maximum and this leads to the acceptance of the hypothesis of
change.
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2 3 4 5 6
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Figure 5: Plot of the values of the test statistic for the Bliss data

8.0 Conclusion

This paper proposes the use of artificial neural network in the estimation of the
conditional binomial probabilities and then uses the likelihood ratio test to check for
change point. Simulations studies show that the power of the test depends on the
size (a large change has a high chance of being detected), the location of the change
point (a change near the center of the data is more likely to be detected than a
change near the edges of the data) and the size of the sample (as the sample size
increases a change is more likely to be detected) under consideration. It is also
evident that the neural network method gives better estimates than the parametric
method.
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In the analysis of the beetles’ data we were able to estimate the conditional means
using the neural network which we compare with the parametric method using a
generalized link function model. The values of the m.s.e. indicate that the neural
network performs better than the generalized link function method in estimating
the conditional probabilities. Our test was able to correctly identify change at the
fourth dosage which corresponds to LD50.

The simulations and data analysis programs in R are available from the first author.
Acknowledgments: The authors wish to thank the Editor and referees for their
valuable comments and suggestions that helped to improve the presentation of the
paper.

Appendix

Table 9: The critical values Cl andcz, generated using Theorem 2.1
and 3.1 respectively in Gombay and Horvath (1996)

Sample size a Cl1 C2
50 0.01 5.154013 4.787015
0.05 4.167178 4.306045
0.1 3.3731367 4.063449
100 0.01 5.219244 4.854494
0.05 4.286601 4.385838
0.1 3.874723 4.151836
150 0.01 5.249661 4.887406
0.05 4.341763 4.42462
0.1 3.940813 4.194628
200 0.01 5.268792 4.908558
0.05 4.467199 4.449472
0.1 3.982043 4.22199
481 0.01 5.310178 4.73092
0.05 4.456003 4.274104
0.1 4.078778 4.049254
500 0.01 5.319912 4966611
0.05 4.167178 4.517474
0.1 4.09062 4.296645
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