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Abstract

Statistically, change point is the location or the time point such that observations
follow one distribution up to the point and then another afterwards. Change point
problems are encountered in our daily life and in disciplines such as economics,
finance, medicine, geology, literature among others. In this paper, the change point
in binomial observations whose the mean is dependent on explanatory variables is
estimated. The maximum likelihood method was used to estimate the change point
while the conditional means were estimated using the artificial neural network
The consistency and asymptotic normality of neural network parameter estimates
was also proved. We used simulated data to estimate the change point and also
estimated the LD50 for the Bliss beetles data.

Keywords: maximum likelihood estimate, binomial distribution, change point,
artificial neural- network

118 Jomo Kenyatta University of Agriculture and Technology



JAGST Vol. 16(1) 2014 Estimation of change-point

1.0 Introduction
A sequence of independent binomial variables is subject to a change in distribution
after an unknown point. Formally, we can describe this situation as follows.

m,,..., M, areindependent binomial random variables, such that, for a value k,
1<k<b, m, are distributed as

B(n;, p;) 1<i<k

B(n,,p;)) k+1<i<b (1)
where p,;(X) and p/(X)are the success probabilities that depend on the
explanatory variables

X= (Xl,..., XD) e R°. Here the assumption made is that there is a single change

point at the point k . A change point problem will thus be two-fold,
i Hypothesis testing, to ascertain whether significant change occurred in the
distribution.
i Estimation of the change-point, k, if it exists.

Most analytical approaches, developed for dealing with binomial change-point data,
assume the Parameters p,(X)and p;/(X), likek, to be unknown. Particular

attention has been devoted to the case of the m, being (Bernoulli) zero-one

variables i.e. with n, =1forall i

Changes in the regression case have been considered by Quandt (1958, 1960) and
Hinkley (1970) from the maximum likelihood viewpoint.

In this paper we first define the model used and how artificial neural networks are
used to estimate the binomial probabilities. In Section 3 we prove the consistency
and the asymptotic normality of the network parameter estimates. In Section 4 we
conduct simulation studies and the results are presented in Section 5. In section 6
we have an application to Bliss beetles data.

2.0 The Model
The observations M; are independently distributed binomial random variables

whose probability distribution may be denoted as

f(m,p ()=, C, [P OO" L= p, O™ 2)
As the functional form of P, (X) is not known the output @(X, #) of a single hidden-

layer feedforward neural network with H >1 hidden nodes and a single output
node is used to approximate P, (X)

This output may be expressed as

o(x,0) =y (£ (x,0))
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H D
£(x0)=a, +Zah{who +2thxd} (3)
d=1

h=0

where QEQ:(Whj,ah h=01---,H j=01---,D) is the vector of

network weights and ¥ is the activation function of the network. The unipolar
function is used as the activation function due to the fact that its output is in the
range [0, 1] which makes it appropriate in the estimation of probabilities. Q is
assumed compact to ensure that it is closed and bounded.

Replacing p; (X) in equation (2) with ¢(X, ) we have

f(m, pi(x))=,C, lo(x.O]"L-p(x.)]"™ (4)
To determine whether significant change occur the hypothesis problem is stated as
Ho:pi(x) =po(x)1 <1<k
Against
Ha:pi(X) =po(x) for some i <k, and for some

i >k ,pi()=p{(x)
where 1<k <bis the unknown change-point location and po(x) # P;(X).

If Ho is rejected then the value of k will have to be estimated. We use the likelihood
method to do this. Several authors have considered this method. Ruhkin and Gary
(1995) established the minimum error probability of the change-point maximum
likelihood estimates for fixed binomial probabilities. Hinkley and Hinkley (1970) used
the same method to estimate the change point when both the probabilities of
success before and after the change-point are known. They also considered

the situation where these probabilities are unknown and they replaced them with
their maximum likelihood estimates (m.l.e's). If H, istrue and the probabilities po(x)

and p/(X) are known then the likelihood function is given by

L (m,x, po, P) = H[“m J[pi oI L= p 01" H(E_][p{(x)]mi L oo™

i=k+1
(5)
while for unknown probabilities their m.l.e.'s are used.

The m.l.e. IZ of kis the value of k that maximizes the likelihood

function. Thus

k = max L, (m,x, p,,p’ 6
ax «( P, P') (6)
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' M
For unknown probabilities po(x) and p; (X) their respective m.l.e's. are W

K
and ——  where

Kk b k

b k b
M=>m,M=>m,N=>n,N=>n ,M;=>m->mand

i=1 i=1 i=1 i=1 i=1

Thus the loglikelihood function is

k = Iog Lk(ﬁO’ ﬁ')

:Zb: ( )+Zk:{m Iog—+(n -m, )|Og(1—'\N/I—)}

i=1 k k

=1 k k

+Z{m |ogM_+(n -m;)log(1- '\l::" )}

=Zbllog(::'j+{Mklog%+(N M)|09( N )} (7)

k

Thus the maximum likelihood estimate of the change point k is

k = max I, (8)
2<k<b-1

3.0 Consistency and Asymptotic Normality of the Neural Network Parameter
Estimates
The random variables (m,, X;) are independent with parameters (n,, p(X,))

i=1---,b.
An output of a neural network, ¢@(X, ) is used to estimate p,(X) by minimizing
the negative of the loglikelihood function divided by b. That is the function

I(e)_——{ Zlog[ J [nilog o(x,0) + (n, mi)loggo(x,e)]} (9)

is minimized.
The expected value of this target function |, (6) is
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l,(0) = _E{ %{ Zb:k)g(l:; ]+[ni log p(x, ) + (n; —m, )|09¢(X,‘9)] } :|

i=1 i

= _E|: { [:,1 j+[nl Iogw(xlle)"‘(nl_ml)logw(xl!‘g)] } } (10)

i
Assuming that |, (&) has a unique minimum if @ is in the compact set Q , then this

minimum is characterised by

V|o(l9) _ —nlE{ p(xl) _ 1- p(xl)
P(X1,0) 1-9(X.,0)

Since the neural network output functions are continuous in x and in @ and

continuously differentiable in @it is possible to interchange expectation and

differentiation.

If the model is correctly specified then p(X) = (X, 8’) for some 8’ € Q

and equation (11) is solved but in a general situation @'is defined as

0' = arg r(plg? 1,(6) (12)

}Vgo(Xl,H) =0 (11)

For an estimator Bof &' obtained by minimising equation (10), its consistency

implies that @ — @'as b — o
In the context of classical regression our model may written as

m, =n,p(X;)+¢& i=L---b (13)
where the residuals are
g =m —np(X;) i=1--b (14)

1
Since the observations (M,, X;) areindependentand P(m, | X;) =—E(m, | X,)
n

we have that E(g;, =0)and
Var(g,) = E(m, —n, p,(x))* = E{(E(m, —n, p, (X))* | X,)}

= E{E(M,* —2mn, p, () + (0, p, (00)*) | X))

2
=0," <o

Also we note that Var(¢,) is independentof &  and
Var(e; | X;) =n,p(X;)d- p(X;))
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Theorem3.1 Let U;,U,,- - beindependent random vectors in RP, Q=R be
compact,
Y : R° x Q — R be measurable such that
1. EIYU,;fl<ko VOeQ
2. Y (U, ;) is Lipschitz continuous in @ thatis for some L(u) >0
3. E(L(,U)) <
Then sup | lZb:Y(Ui;G) -E(Y(U,;60)) > 0 in probability.

0eQ i=1

This is the Uniform Law of Large Numbers (ULLN) whose proof is found in

Andrews (1992). We use this theorem to prove the consistency of é
Franke and Neumann (2000) in their work discussed nonlinear least square
estimates for neural network parameters. To follow their work we make the
following assumptions. We note that the residuals in equation (14) are independent
and bounded in absolute value by m; if
i.  The activation function is bounded and twice continuously
differentiable and E(m; | X,)is also bounded. This assumption is
usually satisfied if the activation function is either unipolar or bipolar .
ii.  1,(6) has a unique global minimum at &' in the interior of Q and
V?1,(8) ,which is the Hessian matrix is positive definite. This is a standard

assumption in regression analysis.

iii. Q is chosen such that for some 6 >0, 8 < ¢(Xx;0) <1- 6 for all
xeROeQ,.
This is a standard assumption.

iv.  (m,, X,) are independent with some density v(X) and
Ell X, |I? <.
This is a standard assumption since the observed values of X, will have to
be finite.

V. p(X) is continuous and forsome v >0, O<v < p(x)<l-v<1.

This assumption ensures that the experiments do not become degenerate. i.e. we
do not have all events in the experiment with probability of one or zero.

To derive the asymptotic normality of @—6' we separately consider its two

asymptotically in-dependent components @ — @ and @ — @' where

0 = arg 'T'Q T(e) is generated by replacing m; by
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E(m; | X;) in equation (9) to obtain

1(0) = —;{ Zlog(:f )

J+[ni|og @(x,0) +(n, —n, p, ) log p(x,6)] } (16)
We use the following theorem which is similar to Theorem 1 of Franke and Neumann

(2000) to show the asymptotic normality of é -0

Theorem 3.2  Suppose assumptions (i)-(v) are satisfied. Let
(m;, X;) ~ B(n,, p; (X)) . Then as

b — oo, with 0 and 0’ as defined above
-0 ¥, 0
B o of5))
0 -6 0 2,

that is \/E(é—é) and ﬁ(é—@')are asymptotically independent normal

random vectors with co-variance matrices 2;andZX,respectively, where

Z, = AT(6)B,(6)AT(9)

T, = AT(0)B,(0)AT(0)

With

Bl(e') _ E|: 2(n1 p()(,l))(l_ p(xl)') -
9" (X1; 01~ 9(X,;6")

}Vco (X1;0)9' (X1;0")

(n,p(X,)) = 9(X,;6"))*
¢2(X1;9’)(1_¢(X1;9'))2

B,(0") = E{ }Vw (X1:0")9" (X1;0")

A Y Y ’
An immediate consequence of this theorem is that \/H(H —0) and \/E(H -0') is

asymptotically normal with mean 0 and covariance matrix X +2,

BZ(H'):O

. In a correctly

specified model since there is essentially no effect due to the

randomness of Xi's implying that the difference (0-6) is asymptotically of order

05 05
smaller than P whilein a miss-specified case this difference is of order b™ we
also note that

’ !
B, (@) contains the variance of mlindicating its randomness while B, (@)
contains the modeling bias and hence it would be zero if the model were correctly
specified.
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We prove the consistency and asymptotic normality of the network parameter
estimates in four parts.

Part |
Using theorem 3.1, and taking U; = X, then
n; 17)
Y(X;:0) =—{ |09(n>p(x>)J+[”a P(X;)1oge(x,6) + (n; =, p(X,))A~log(x, 0))] } (
Thus
~ 1 .
sup|1(0)—1,(8) |=sup | =D Y (Ui;0) - E(Y(U,;0)) |= 0, (1) (18)
0eQ e b i=1
Similarly,

e
n; p(X;)

TO) =1 (@) = LS - _o(x0)
[1(6)-1,(0) H bglog n (ni—1In; P(Xi))|091_¢(x,9)
m;
1(8) and |~(t9) as defined in equations (9) and (16).
Taking U, =(m,, X,) we obtain
occ
Cog PR _o(x.0)
Y(m;, x,6) =log n (n —n; D(Xi))|091_(p(xle)
m;
Then
sup T(0)~1,(@) Fsup | 3 Y (1, x.0) 0,0 (19

as E(Y(m, X,,8))=0
We have to confirm whether the three conditions of Theorem 3.1 are satisfied in
both cases. The activation function  is twice continuously differentiable and is

bounded and so is ¢(X,8).

As the derivative of @(X,#) is bounded then we have a constant @ so that for all

XeR?,0cQ

0 .
|£¢(X,9j)|3a) if @y, ay, W, W <1
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| 0
(%?j
Hence it follows that for a suitable constant @’

lo(x,0) lI< & [| Xi |

r

p(X,0)) [So| X[ if wy,-,wy <1

In a corresponding manner, for some constant @

1V logo(x,0) |l= o 12X O, X. || and
o(x,6)

_ o0l
IVlog—p(x. O =0 252X,

Hence for Y(X,;0)  inequation (17)

| Y(u;0) =Y (u;0") [< sup 1Y (o) lle-o

(20)

<{ np(x) +(n = p(x)e” | % 1€~ 6" | =" [ x; [l 6~ €' |

(21)

The assumption that are independent with finite variance makes conditions (ii) and

(iii) of Theorem 3.1 to be satisfied with L(u) =" || u ||

Also from the third assumption made after the statement of Theorem 3.1 and that
0 < p(x) <1we have that Y (u,#) is uniformly bounded in X e R®,0 € Q

Since M; S are bounded binomial random variables then a similar argument to the

above is used for

Y (x,0) in equation (19) and therefore we have from equations (18) and (19)

166 1l=0,(1) and |6 -0 [|= 0, (1)

Hence it follows by assumption (ii) and with increasing probability that & and Qare

interior pointsin Q.  In particular
VI(0) =VI(0) = VI, (&)
with probability closeto1as b — oo

Part Il
With probability close to 1 we have that

0=VI@)-VI(0)+VI (&)

— (G- O Y

i=1

@(X;,0) 1-9(X,,0")

b { nip(X;) (i —m)A-p(X;))

}V¢(Xi,9')+ F(22)
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where,

F, =VI@)-VI(0)— (6 -6 —V1,(8") + (6 — 6')(V’],(6)) - VI, ()
=0,(l0 -0 (23)

But

0=Vl,(©)

_ p(xl) _ 1- p(xl) '

‘”lE{ 0(X,0) 1-p(X,,0) }W’(X“e) -

and by the central limit theorem the middle term of equation (22) is of the order

b™®°. Since it is possible to interchange expectations and differentiation and
@(X,0) is bounded and bounded away from zero uniformlyin X e R°,0 € Q

then the logarithms in the functions  1,(6),1(&) and f(e) will all be
defined.
Hence equation (22) becomes

V(00 -6")+0,(16 -6'|)) =0(b™*) (25)
and since V?1,(8") the Hessian is positive definite by assumption (ii) we have that
0,(10-¢'[)=0(b™*) (26)
Replacing V°l,(0") with A(6’) then equation (22) becomes

= on_argna L% np(X;) _ (m —m)A-p(X;)) / (27)

Vb(0 -0 =A@®) \Eg { o(X,.0) = p(X,.0) }Vw(xiv9)+0p(1)

and hence for a suitable function S satisfying E(S;(X,)) =0 we get

JB(é-e’)=b-°-5isl(xi)+op(1) (28)

Part Il
From equations (13), (19) and that E(g, | X;) =0, then with probability going to 1
we have

n.

(s
Y(mi,x,e)=|ogw_(gi)|og%
N
and

0= VI(d) - V((d) + VI ()

(29)
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_ vf(e)+%§bly(m,x,é)

i=1

~ b 0
~vi (9)_izgi VolXi,0) (30)
Vb F (X, )= p(X,.6))
As in part Il of the proof we have that
A Py — r—li 2 n; p(Xx;) _(ni_mi)(l_ p(X;)) , (31)
Vb(6-0)=A@®) \Ezl { oK) I p(X6) }w(xi,e)mpa)
and hence for a suitable function S, satisfying E(S,(X;)) = 0 we get
R b
Vb(@-6)=b">"s,(X,)+0,(1) (32)
i1

Hence we have for some constants @, , @, and for all X € R P
18, () [l x| and [|'s,(X) l[<@,|| x|

since V|| @(X;0) ||is bounded. As E(X,)is finite, & bounded and (X,&;) are

independent we have

Ny 9:9 J%N[ 0,(210 Jj (33)
6 -0 0%,

asforallf,g

b Cov(é, -6} ,0, —éf)=b-1zb:E(s1f(xi)szg(xj)gj)mpa)

i,j=1

= bflzb: E(sy (Xi)szg (X i) gi)

i#]

+b71i E(sy; (Xi)SZQ (X)) &)+ Op(l)

=
=0,(1) (34)
as E(X,]g)=0

Part IV
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We now require the form of 2, and %, .

Z, = E(s.(X))s; (X)) = A7(0)B(9)AT(9) (35)

Since S,(X;) 1=1---,b areindependent and where E(S,(X;))=0, where

(n,p(X,))A- p(X,))
9*(X,;0)1-9(X,;0")*
Similarly as E(s; | X;) = o asin equation (15) we have
2, = E(SZ(Xl)SZt(Xl)giZ)
= E(Sz (xl)szt (Xl) n; p(xl)(l_ n; p(xl)))
= A™(0)B,(0)A™(0") (36)

B,(0") = E[ }V(P (X1:0)9 (X,;0")

where

Bz(ei)z E|: (anp(xl))_q)(xl’el))zz
9" (X;0)1-0(X:0"))

Thus the theorem is proved.

}V(P (X1:0")9" (X1;0")

4.0 Simulation Studies

For simulation purposes under H. , the following model was used

@+exp(=1.5+x; +X,))) ™" 1<i<k

P(mi | xi = X) = .
(L+exp((-1.5+2x, +1.8x,)))" k+l<i<h-1

(37)

X

The change point k was at fixed for a sample size b=200. " and Xai were generated

_ “th
as uniform [0, 1]. N ,the size of the | group were generated as the integer part of

uniform [2, b]. Then the binomial random variable m; is generated in line with
equation (37). A simulation was done when change point was fixed half way through
the data with the aim of testing whether change existed.

At each estimated change point the values of the loglikelihood and the test statistic
calculated. A plot of the test statistic is presented in Figure 1. A plot of the values of
loglikelihood against the estimated change point is given in Figure 3. A further
simulation is carried out to test for a change when it is actually not present and at
each estimated change point the values of loglikelihood and the test statistic
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calculated. A plot of the test statistic is presented in Figure 2. 1000 simulationswere
carried out with the change point fixed half way through the data. That is the change
point likelihood estimates of the change point is presented in Figure was fixed at
100.

In each simulation the change point is estimated. A histogram of the maximum
likelihood estimates of the change point is presented in Figure 4.

Another 1000 simulation were carried out when actually there were no change in
the data. A histogram of the maximum likelihood estimates of the change point is
presented in Figure 5.

Square Root of -2Log Likelihood Ratio

o
2
g
g
g

Figure 1: Plot of the values of the test statistic when the alternative is true

20

1.0

Square Root of -2Log Likelihood Ratio
05 15
| 1
——

0.0

0 50 100 150 200

Index

Figure 2: Plot of the values of the test statistic when the alternative is false
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likelihood
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1
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change point

Figure 3: Plot of the values of the loglikelihood maximum likelihood estimates of change
point when the null hypothesis is false.
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I 1 |
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|
T T T T T 1
70 80 %0 100 110 120

]
L

change point

Figure 4: Histogram of maximum likelihood estimates of change point when the null
hypothesis is false
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100

B0

Frequency

0 50 100 150 200

change point

Figure 5: Histogram of maximum likelihood estimates of change point when there is no
change

5.0 Results

Figure 1 indicates that the hypothesis of change is accepted at all levels as the value
of the test statistic is greater than the critical values C; given in Table 1. But the
hypothesis of change is accepted at 1% when using the critical values C;. This is due
to the fact that the rejection regions given by C; are conservative as noted by
Gombay and Horvath (1996)

From Figure 2 the hypothesis of no change is not rejected at all the three levels of
significance. In both cases the critical values used are in Table 1 with sample size of

200. The critical values are generated in line with Gombay and Horvath (1996).

Table 1: Critical values

Sample size
o C1 Cz

200 0.01 | 5.268792 | 4.908558
0.05 | 4.467199 | 4.449472
0.1 | 3.982043 | 4.22199
481 0.01 | 5.310178 | 4.73092
0.05 | 4.456003 | 4.274104
0.1 4.078778 | 4.049254
Figure 3 indicates that we have large values of the loglikelihood near the change
point. A histogram of the maximum likelihood estimates of the change point shows
that most of them are between 95-100 which is near our actual value of the change
point.
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We look at the asymptotic properties of the change point estimates. Figure 7 shows
the histogram of the biases of the change point estimates. The biases have an
approximate mean of 0. To evaluate the goodness of fit we draw normal curve
whose mean and variance are those of the bias. This is presented in Figure 6. Further
a quantile-quantile plot, in Figure 8 confirms the normality of the change point
estimates. We further performed Kolmogorov-Smirnov test of normality on the
biases of the change point estimates. The test gives a p-value of 0.01121. Thus the
null hypothesis of normality is accepted at 1%. This is an indication that the biases
of the estimates are asymptotically normally distributed with a mean of zero.

400
|

yhist
006
I
300
1

Frequency
200
|

004
I

0.02
I

0.00
1

bias

Figure 6: Normal curve and
histogram together

Figure 7: Histogram of the biases of
the change point estimates

120 130
I

110

Sample Quantiles

80

Theoretical Quantiles

Figure 8: qgplot of the change-point estimates

6.0 Application to Real Data

To demonstrate the use of artificial neural networks in the estimation of the
conditional means and maximum likelihood estimate of change point, we use the
famous beetles data of Bliss (1935) batches of adult beetles were exposed to
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gaseous carbon disulphide for five hours. This data has been extensively used by
statisticians in studies of generalized link functions e.g., Prentice (1976) Stukel
(1988) and are used by Spiegelhalter et al (1996) to demonstrate how BUGS handles
generalized linear models for binomial data. The data is given below.

Table 2: Beetles Data
Dosage (CS2mg/litre)

No. of beetles

No. of beetles killed

49.057 59 6

52.991 60 13
56.911 62 18
60.842 56 28
64.759 63 52
68.691 59 53
72.611 62 61
76.542 60 60

Here we assume that

number of deaths due to the

P(mi | Xl) :ﬂo +/61Xli

ith
dose and

where

Xy is the respective dose. We want to
determine the dosage at which 50% of the beetles are killed as this indicates a
significant change in the structure of the probability of death. In line with Gombay
and Horvath [4] we generated the critical values C; and C;, using a sample size as
481 which we presented in Table 1 . The graph in Figure 9 gives us a value test
statistic of 15.44, the is the maximum and this leads to the rejection hypothesis of
no change. In Figure 10 we present a plot of the values of the loglikelihood against
the dosage. The maximum of the curve corresponds to the third change point
location which is the fourth dosage. From the data the fourth dosage of 60.842
CS,mg/litre kills 50% of the beetles.

15
4
1

14
L

Square Root of -2Loglikelihood Ratio
T
loglikelihood
6l
Il
=

N s
@
FY
@
~
w
-
2}
o

dosage dosage

Figure 9: Plot of the values of the
test statistic for the Bliss data

Figure 10: Plot of the values of the
loglikelihood against the dosage for
the Bliss data
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This paper proposes the use of artificial neural network in the estimation of the
conditional binomial probabilities and then the use the maximum likelihood to
estimate the change point. If the change point is identified, then the conditional
probabilities are estimated from the explanatory variables.

Simulation under the alternative hypothesis shows that the change point estimator
is consistent, asymptotically unbiased and normally distributed. An empirical
example on analyzing the Bliss beetles data is given.

The simulation and data analysis programs in R are available from the first author.
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