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Abstract 

In many applications like finance, industry and medicine, it is important to consider 
that the model parameters may undergo changes at unknown moment in time. 
This paper deals with estimation, testing and confidence interval of a change point 
for a univariate variable which is assumed to be normally distributed. To detect a 
possible change point, we use a Schwarz Information Criterion (SIC) statistic whose 
asymptotic distribution under the null hypothesis is determined. The percentile 
bootstrap method is used to construct the confidence interval of the estimated 
change point. The developed tools and methods are applied to the 1987 – 1988 US 
trade deficit data. Our results show that a significant change in US trade deficit 
occurred in November 1987. Further, it is shown that the percentile bootstrap 
confidence intervals are not always symmetrical. 
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1.0 Introduction 

In many applications of statistics such as the financial, industrial and medical fields, 
it is important to consider that the model parameters may undergo changes at an 
unknown moment of time. The time moment when the model has changed is 
called the change point. Other synonyms are probabilistic diagnostics and disorder 
problems. 
 
The change point problem is twofold: Change point detection and change point 
estimation. Depending on whether the probabilistic model of data is known or not, 
one can distinguish between parametric, semi-parametric and non-parametric 
methods of change point detection and estimation. Worsley (1983) used the 
likelihood ratio method to test for a change in probability of a sequence of 
independent binomial variables. 
Non-parametric detection of a change point in a sequence of random variables 
was studied by many authors. Page (1955) used the cumulative sum technique to 
test for a possible change point. Worsley (1983) used the cumulativesum statistics 
to test for a change in probability of a sequence of independentbinomial random 
variables. 
 
Page's CUSUM and Shewhart's control chart are some of the popular procedures 
used when both the pre-change distribution f0 and post-change distribution f1  are 
completely specified. Yashchin (1997) uses the likelihood ratio strategy. However, 
in line with statistical quality control, standard procedures assume that the pre-
change distribution f0 is known but the post-change distribution f1 is unknown and 
therefore has to be estimated. Such a study has been done in Siegmund and 
Venkatraman (1995). 
 
The maximum likelihood estimate (MLE) method has been used to estimate a 
change point when the probabilistic data model is known. Hinkley (1970) applied 
the MLE method to estimate a change point in a sequence of normally distributed 
random variables whereby he derived the asymptotic distribution of the estimator 
using random walk theory. Hinkley and Hinkley (1970) used the MLE method to 
estimate the change point in a sequence of zero-one variables. 
 
Pettitt (1980) used a Mann-Whitney statistic to estimate a change point when it is 
known that a change has taken place at an unknown point in a sequence of 
random variables. In this work, the estimate is compared with MLE using Monte 
Carlo techniques and is found to be fairly constant over various distributions like 
normal distribution. 
As indicated above, parametric test statistics for a change point are based on the 
likelihood ratio statistic and the estimation done using maximum likelihood 
method. More general results can be found in Csörgö, M., and Horvath, L.(1997). 
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This paper uses the theory of Schwarz Information Criterion (SIC) to detect and 
estimate a change point for a given sequence of normally distributed random 
variables.  
 
2.0 Change Point Model Formulation 

We assume that one is able to observe a sequence of independent normal 
observations whose distribution possibly changes from ( , )b bN µ σ  to ( , )a aN µ σ  

at an unknown point in time, K . 
That is  ~ ( , ), 1,2,...,~ ( , ), 1, 2,...,i b bi a aX N i KX X N i K K nµ σ

µ σ

=
= 

= + +
 

 
2.1  Hypotheses 

In this paper, the hypothesis of stability is defined as 2 2 2 20 1 2 1 2: ... and ...n nH µ µ µ µ σ σ σ σ= = = = = = = = ……………………………….. (1) 

The alternative hypothesis is defined as 2 2 2 2 2 21 1 1 1 ` 1: ... ... and ... ...K b K n a K b K n aH µ µ µ µ µ µ σ σ σ σ σ σ+ += = = ≠ = = = = = = ≠ = = =

………….(2) 

Under 0H , the mle’s for µ and 2σ  are, respectively, 2 21 11 1and ( )ˆ ˆn ni ii ix x x xn nµ σ
= =

= = = −∑ ∑
…………………………………………………..   (3)

 

and under 1H , the mle’s for µ and 2σ  are, respectively, 2 21 11 1and ( )ˆ ˆK Kb b i a i bi ix x x xK Kµ σ
= =

= = = −∑ ∑  2 21 11 1and ( )ˆ ˆn na a i a i ai K i Kx x x xn K n Kµ σ
= + = +

= = = −
− −

∑ ∑  

  
2.2 Schwarz Information Criterions for the Change Point Inference 

The Schwarz Information Criterion (SIC) was proposed by (Schwarz, 1978) and it is 
expressed as ˆ( ) 2log ( ) log , 1,2,...,mSIC m L m n m M= − Θ + = ………………………………………    (4) 

Where m is the number of free parameters, ˆ( )mL Θ is the maximum likelihood 

function for model(m) and logm n  is the penalty term 

Using equation (4), the SIC under 0H has 2 free parameters and it is clearly defined 

as 2( ) log2 log 2logˆSIC n n n n nπ σ= + + + …………………………………………………..     (5) 
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where 2 211 ( )ˆ n ii x xnσ
=

= −∑ is the mle of 2σ under 0H . 

Similarly, using equation (4), the SIC under 1H has 4 free parameters and it is 

defined as 
 2 2( ) log2 log ( )log 4logˆ ˆb aSIC K n K n K n nπ σ σ= + + − + + ………………………..   (6) 

 
for  2 2K n≤ ≤ −  

where 2 21 11 1( ) andˆ K Kb i b b ii ix x x xK Kσ
= =

= − =∑ ∑ are the mle’s of the variance 

and the mean,respectively, before the change point and  2 21 11 1( ) andˆ n na i a a ii K i Kx x x xn K n Kσ
= + = +

= − =
− −

∑ ∑  are the mle’s of the 

variance and the mean, respectively, after the change point. 
 

2.3 Change Point Estimation 

As in Chen and Gupta (2000), we estimate the change point K  by K̂  such that 2 2ˆ( ) min ( )K nSIC K SIC K
≤ ≤ −

= ………………………………………………………………………….        (7) 

 

2.4 Change Point Testing 

If K  is not fixed and is unknown, we follow the approach of Chen and Gupta 
(2000) and fail to reject  0H iff 

 2 2min ( ( )) ( ) ( )K nK n SIC K R SIC nα
≤ ≤ −

Λ = + − …………………………………………………     (8) 

 
is positive where ( )nR α is the critical value associated with the sample size n and 

significance level α . 
 
2.4.1  Critical Values for SIC, ( )nR α  

Let , 2 min { ( ) ( )}n K K n K SIC K SIC n
≤ ≤ −

∆ = − ………………….………………………………………  (9) 

       
Then, , 2 2 2 222,max { ( ) ( )}max( log ( )log log 2log )ˆ ˆ ˆ2logn K K n K b aK n Kn K SIC K SIC nK n K n nn σ σ σ

η

≤ ≤ −

≤ ≤ −

∆ = − −

= − + − − +

= − +

 ………(10) 
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where ( )
122 2 2, 2 max ( log ( )log log )ˆ ˆ ˆn K b aK n K K n K nη σ σ σ

≤ ≤ −
= + − −

…………………….(11)
 

 
From equation (10), one has 

( )
12, ,2logn K n Knη = − ∆

…………………………………………………………………………………(12)
 

 

Theorem 1 Under 0H  , for all x ∈ � , we have for 

( )
12, ,2logn K n Knη = − ∆  ,lim ((log ) log ) exp( 2exp( ))n Kn P a n x b n xη

→∞
≤ + = − −

……........................ (13)
 

Where 
12(log )(2log log ) and (log ) 2log log log log loga n n b n n n= = +  

This result follows immediately from Theorem (2.1) of Gombay and Horvath (1996) 
and Theorem (2.27) of Chen and Gupta (2000). 
 
Using equation (8) to determine the critical values, ( )nR α , we note that under  

theorem (1), 
 02 2 02 2 02, 00.5, 0,
1 ( ( ) min ( ) ( )| )( max{ ( ) ( )} ( )| )( ( )| )( 2log ( )| )(0 ( ( ) 2log ) | )( (log ) (log ) (log ) (log )( ( ) 2lo

nK n nK nn nn K nn K n n K n
P SIC n SIC K R HP SIC n SIC K R HP R HP n R HP R n HP b n a n b n a n R

α α

α

α

η α

η α

η α

≤ ≤ −

≤ ≤ −

− = < +

= − − > −

= ∆ > −

= − + > −

= < < +

= − < − < +

( )

0.5 00.5 g ) (log )| )exp{ 2exp (log ) (log )( ( )2log ) }exp{ 2exp((log ))}n n b n Hb n a n R n b nα

−

≅ − − + − −

                    (14) 
 
This then implies that 

( )0.5exp{ 2exp (log ) (log )( ( ) 2log ) } 1 exp{ 2exp((log ))}nb n a n R n b nα α− − + ≅ − + −  

So that 20.51 (log )( ) loglog{1 exp( 2exp((log )))} 2log(log ) (log )n b nR b n na n a nα α − 
≅ − − + − + − 
 

         (15) 
We computed ( )nR α  for 0.10,0.05,0.025,0.01α =  under various sample sizes. 

The critical values are presented in table 1 below. 
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Table 1: Asymptotic critical values from equation (15), denoted as  ( )nR α  

 ( )nR α  

n          α  0.10 0.05 0.025 0.010 

7.  7.757992 12.909378 19.63085 35.69935 
8.  7.404845 11.925257 17.23230 25.97584 
9.  7.262061 11.540438 16.42328 23.94784 
10.  7.168499 11.312834 15.99423 23.07060 
11.  7.087391 11.138584 15.69148 22.52369 
12.  7.010367 10.988932 15.44547 22.10831 
13.  6.935751 10.854445 15.23288 21.76289 
14.  6.863355 10.731205 15.04386 21.46347 
15.  6.793235 10.617091 14.87308 21.19818 
16.  6.725433 10.510699 14.71714 20.95987 
17.  6.659935 10.410984 14.57361 20.74363 
18.  6.596686 10.317120 14.44062 20.54582 
19.  6.535604 10.228435 14.31671 20.36366 
20.  6.476595 10.144368 14.20073 20.19494 
21.  6.419556 10.064448 14.09171 20.03788 
22.  6.364386 9.988275 13.98886 19.89103 
23.  6.310986 9.915503 13.89152 19.75319 
24.  6.259258 9.845834 13.79911 19.62336 
25.  6.209112 9.779008 13.71117 19.50068 
26.  6.160461 9.714797 13.62728 19.38444 
27.  6.113227 9.652998 13.54708 19.27401 
28.  6.067332 9.593433 13.47026 19.16885 
29.  6.022706 9.535943 13.39655 19.06850 
30.  5.979285 9.480385 13.32569 18.97255 

      40. 5.599685 9.007971 12.736662 18.19266 
      50. 5.293224 8.639973 12.291699 17.62215 
      60. 5.036173 8.338068 11.933873 17.17331 
      70. 4.814683 8.081879 11.634525 16.80384 
      80. 4.620012 7.859242 11.377170 16.49016 
      90. 4.446292 7.662302 11.151446 16.21778 
      100. 4.289397 7.485684 10.950411 15.97721 
      110. 4.146315 7.325548 10.769185 15.76186 
      120. 4.014778 7.179053 10.604207 15.56699 
      130. 3.893040 7.044036 10.452798 15.38910 
      140. 3.779721 6.918813 10.312891 15.22548 
      150. 3.673718 6.802049 10.182861 15.07403 
      160 3.574131 6.692662 10.061401 14.93309 
      170. 3.480216 6.589768 9.947450 14.80131 
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      180. 3.391355 6.492633 9.840132 14.67758 
      190. 3.307024 6.400641 9.738717 14.56097 
      200. 3.226777 6.313270 9.642588 14.45073 

 
3.0 Confidence Interval for the Change Point 

Various methods for determining change point confidence intervals exist 

inliterature. One method involves the asymptotic distribution of K̂ K− , whereK  

is the true change point and K̂  is its estimate. See, for example, Hinkleyand 
Hinkley (1970) and Feder (1975). 
Another approximation method involves the use of bootstrap methods.See for 
instance Hall (1992), Efon and Tibishirani (1993), Davison and Hinkley(1997) and 
Pastor-Barriuso et al(2003).  
 
In this paper, we  use the Percentile Bootstrap method to determine the 
confidence interval  for the true change point K . 
 

3.1 Percentile Bootstrap Confidence Intervalfor the Time of Change 

We approximate the distribution of K̂ K−  using the percentilebootstrap 
techniqueas follows: 
 

1. Given the original sample , 1,2,...,iX i n= ,estimate the change 

point ˆnK and hence the MLEs , , ,ˆ ˆb b a ax xσ σ  

2. Generate a bootstrap sample *iX such that * ˆ(1, , )Iˆ ni bi bi i KX N x σ
≤

= + ˆ 1(1, , )Iˆ nai ai i KN x σ
≥ +

 

            Where ( , , )N f g h  is a normal variable of size f ,  mean g and standard 

deviation h . 

3. Using the bootstrap sample { }* 1ni iX
=

, replicate the estimated time of 

change, *ˆnK . 

4. Repeat steps 2 and 3 B times. This step yields B independent bootstrap 
samples 

 

{ } { }*1 *1 1,...,n nBi ii iX X
= =

 from which we get *1 *ˆ ˆ,..., Bn nK K bootstrap change points. 

 
From these replicates, we are then able to estimate the distribution function of    *ˆ ˆn nK K−  

where *ˆnK  is the time of change estimate of the re-samples. 
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Proof 

Suppose that * / 2K α and *1 / 2K α−  are the quartiles of *nK  such that 

 

( ) ( )* * * */ 2 1 / 2 / 2n nP K K P K Kα α α−≤ = > =
………………………………………………………(16) 

 
One then has 
 

( )* * */ 2 1 / 2 1nP K K Kα α α−≤ ≤ = −
……………………………………………………………………  (17)

 

Equation (16) implies that 
 

( )* * */ 2 1 / 2ˆ ˆ ˆ 1n n n nP K K K K K Kα α α−− ≤ − ≤ − = − …………………………………………  (18) 

Assuming that we can approximate the quartiles of  ˆnK K−  by the quartiles of * ˆn nK K− , we have 

( )* */ 2 1 / 2ˆ ˆ ˆ 1n n nP K K K K K Kα α α−− ≤ − ≤ − ≈ −
…………………………………………... (19)

 

So that 

( ) ( )( )* *1 / 2 / 2ˆ ˆ ˆ ˆ 1n n n nP K K K K K K Kα α α−− − ≤ ≤ − − ≈ −
……………………………. (20)

 

As noted in Efon and Tibshirani (1993), transforming equation (20) can give better 

a confidence interval. We therefore transform the random variable ˆnK  using a 

symmetrical function say, ()t , denote as: ˆˆ ( )n nt Kω =  ……………………………………………………………………………………………………. (21) 

 
Using equations (20) and (21), one has 

( ) ( )( )* *1 / 2 / 2ˆ ˆ ˆ ˆ 1n n n nP α αω ω ω ω ω ω ω α−− − ≤ ≤ − − ≈ −  ………………………………….(22) 

Due to symmetry, ( ) ( )* *1 / 2 / 2ˆ ˆn nα αω ω ω ω− − = − − so that equation (22) can be 

written as 

( ) ( )( )* */ 2 1 / 2ˆ ˆ ˆ ˆ 1n n n nP α αω ω ω ω ω ω ω α−+ − ≤ ≤ + − ≈ −
 ……………………………….  (23)

 

So that 

( )* */ 2 1 / 2 1P α αω ω ω α−≤ ≤ ≈ −  ……………………………………………………………………    (24) 

Transforming equation (24) back to the original scale gives 

( )* */ 2 1 / 2 1P K K Kα α α−≤ ≤ ≈ − ………………………………………………………………………  (25) 

That is 

( )( ) ( )( )( )( )* *, 1 / 2 , 1 1 / 2 1n B n BP K K K
α α

α
+ + −

≤ ≤ ≈ −  …………………………………………….. (26) 
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Therefore, the percentileα − bootstrap confidence interval is given by: 

( )( ) ( )( )( )( )* *, 1 / 2 , 1 1 / 2,n B n BK K
α α+ + −

…………………………………………………………………………. (27) 

 
 

4.0 Empirical Results 

4.1 The Data 

Table (2) shows US trade deficit data from 1987 to 1988 in billions of dollars.  The 
data is from Wheeler (1993). 
 

Table 2:  US Trade Deficits 1987-1988 ($ billions) 

 Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1987 10.7 13.0 11.4 11.5 12.5 14.1 14.8 14.1 12.6 16.0 11.7 10.6 
1988 10.0 11.4 7.9 9.5 8.0 11.8 10.5 11.2 9.2 10.1 10.4 10.5 
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Figure 1: Normal Q-Q plot for the data in table 2  

 
From figure 1, the US Trade Deficits from 1987-1988 were approximately normal in 
distribution. 
 

4.2 Change Point Detection 

Using equation (6), the ( )SIC K  for 2 2K n≤ ≤ −  was computed and the results 

presented in figure 2. Using equation (7), the change point was detected 

at ˆ 11K = . This implies that a change of deficits was detected to have occurred in 
November 1987. 



JAGST Vol. 14(2) 2012                                                                                 Change point estimation 

Jomo Kenyatta University of Agriculture and Technology                                                         145 

5 10 15 20

9
5

1
0
0

1
0
5

1
1
0

Month(k)

S
IC

(K
)

 
Figure 2: Change point detection for the US 1987-1988 trade deficits 

This finding agrees with that of Taylor(2000) who analyzed the same data using a 
different change point tool and detected the change point to have occurred in 
November 1987. 
 
4.2 Change Point Testing 

Under section (2.4), equation (8), table 1 and  figure 2, the following values were 
computed: 
 

Table 3: 2 22min{ ( )K SIC K
≤ ≤

, 24( )R α  and (24)SIC  for the1987-1988 US Trade Deficits  2 22min{ ( )K SIC K
≤ ≤

 24( )R α  (24)SIC  

    0.1             0.05              0.025                  0.01 

94.02100 6.25926 9.84583 13.79911 19.62336 106.8370 

From table 3 and using equation (8), we reject 0H  (equation(1))  at 0.05α = . We 

therefore confirm that a change in mean and variance did actually occur in 
November 1987 at 5%  significance level. 
 
4.3 Confidence Interval for the Change Point 

Figure 3 shows the bootstrap change points computed in line with section 3.1. 
10,000 bootstraps for the change point were computed. 
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Figure 3: Histogram of bootstrap change points 

Table 4: Confidence Interval results for B = 10000 bootstrap replications of the 

change point  24ˆ 11K = for the 1987-1988 US Trade Deficits 24ˆ 11K =  

Confidence Level Confidence Interval 

90% 8  -  14 
95% 6  -  17 

Our results indicate that the percentile bootstrap confidence intervals for the 
change point are not always symmetrical. These results are supported by Cook and 
Weisberg (1990). 
 
5.0 Conclusion 

In this paper, we have used the SIC criterion to detect a possible change point. This 
method has been applied to the 1987-1988 US Trade Deficits data and the results 
agreed with those of other authors. A table of critical values was computed for 
reference purposes. 

The authors of this paper considered the case where only one change point was 
assumed to have occurred. More research should be done to model the case 
where two or more change points are assumed to have occurred. 
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